How bacteria break B cell tolerance

There is a lot of indirect evidence that microbial infections can initiate and/or worsen autoimmune disease. Autoantibody production during infection results from activation of low-affinity autoreactive B cells. But how this could lead to autoimmune disease is not clear.

In a study appearing online on July 21 in advance of print publication of the August 1 issue of the Journal of Clinical Investigation, Thierry Martin and colleagues from INSERM show in vivo that an experimental infectious disease creates the necessary and sufficient conditions to activate self-reactive B cells with significant affinity. This could drive them to mature into harmful memory B cells and lead to autoimmune diseases in susceptible individuals.

Title: Autoantigen, innate immunity and T cells cooperate to break B cell tolerance during bacterial infection

AUTHOR CONTACT: Martin Thierry, INSERM, Strasbourg, France
Phone: 33(0)390243983; Fax: 33(0)390244016; E-mail: thierry.martin@chru-strasbourg.fr

Media Contact

Stacie Bloom EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors