Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elevated temperature enhances success of viral cancer therapy

19.07.2005


A therapeutic approach for battling cancer that is based on infection with a specially designed virus similar to the one that causes the common cold has shown promise in clinical trials. Now, new research suggests that fever might be a useful weapon in the fight as well. The study, published in the July issue of Cancer Cell, demonstrates that tumor cells are even more sensitive to viral therapy after they have been incubated at an elevated temperature. The findings could have a significant impact on the future success of viral strategies for cancer therapy.



ONYX-015 is a mutated adenovirus that undergoes selective replication in tumor cells until the cells become so full of virus that they burst and die. The virus is modified so that it only copies itself in tumor cells and is safe for normal cells. In clinical trials, ONYX-015 was a successful therapy for many cancer patients, but the success varied considerably for reasons that were not well understood. Dr. Clodagh C. O’Shea and colleagues from the Cancer Research Institute at the University of California, San Francisco examined why ONYX-015 did not undergo replication in some cancer cells and if it might be possible to sensitize tumor cells to ONYX-015 therapy.

The researchers demonstrated that resistant tumor cells fail to complete an RNA export function that is necessary for ONYX-015 replication. Interestingly, when a cellular heat shock response was induced in the resistant tumor cells, either pharmacologically or by incubating the cells at an elevated temperature similar to that experienced by humans when they have a fever, the RNA export function was restored. Therefore, induction of the heat shock response could rescue ONYX-015 replication in resistant tumor cells.


According to Dr. O’Shea, "Our data suggest that a clinical strategy that does not advocate the use of pharmacological agents to suppress fever would favor the tumor-selective replication of ONYX-015. This study indicates that induction of a heat shock response by pharmacological agents (that could potentially be administered systemically) or local hyperthermia, could greatly augment and broaden ONYX-015’s clinical utility as a cancer therapy."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>