Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three deadly parasite genomes sequenced

15.07.2005


An international group of researchers working in more than 20 laboratories around the globe have determined genetic blueprints for the parasites that cause three deadly insect-borne diseases: African sleeping sickness, leishmaniasis and Chagas disease. The research, funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is published in this week’s issue of Science. Knowing the full genetic make-up of the three parasites--Trypanosoma brucei, Trypanosoma cruzi and Leishmania major--could lead to better ways to treat or prevent the diseases they cause.



"Although relatively unfamiliar in the United States, the collective misery caused by these diseases throughout the world is considerable. Having these genomes in hand will give us many new targets for drug and vaccine development," says NIAID Director Anthony S. Fauci, M.D.

All three diseases are spread by insects. T. brucei, which causes sleeping sickness, is spread by the tsetse fly and is found in sub-Saharan Africa. The World Health Organization estimates there may be as many as 500,000 cases of sleeping sickness each year. If left untreated, sleeping sickness is fatal. Various forms of leishmaniasis are spread by the sandfly and are endemic in 88 countries on five continents. Visceral leishmaniasis, also known as kala azar, is the most severe form of the disease and causes high fever, a swollen spleen and severe weight loss before killing its victims. Cutaneous leishmaniasis, also known as "Baghdad boil," produces numerous skin ulcers that can leave sufferers permanently scarred. Some 1,000 American service members have been diagnosed with cutaneous leishmaniasis according to testimony by Walter Reed Army Institute of Research’s Alan Magill, M.D., at an Institute of Medicine meeting in May 2005. T. cruzi causes Chagas disease and is spread through the infected feces of an insect sometimes called the "kissing bug" for its habit of biting near a person’s mouth. Found throughout Central and South America, Chagas disease is particularly prevalent among the poor and claims 50,000 lives each year.


NIAID supported the sequencing projects through grants to Kenneth Stuart, Ph.D., and Peter Myler, Ph.D., of Seattle Biomedical Research Institute (SBRI); to Najib El-Sayed, Ph.D., of The Institute for Genome Research (TIGR), Rockville, MD; and to Bjorn Andersson, Ph.D, of the Karolinska Institute in Stockholm, Sweden.

"One of the biggest surprises to come out of the genome sequencing projects is that these parasites--despite major differences in how they are spread and how they cause disease--nevertheless have a core of 6,200 genes in common," says Martin John Rogers, Ph.D., of NIAID’s Parasitology and International Programs Branch. At a genetic level, the similarities among these parasites outweigh their differences. The shared genes give scientists a vastly expanded array of targets for development of new drugs that conceivably could work against all three parasites, explains Dr. Rogers. Conversely, he adds, analyzing the relatively smaller ways in which the organisms diverge genetically could help researchers design vaccines, drugs and improved diagnostics targeted to each of the three parasites.

In addition to the publication of the three genomes, this week’s issue of Science also includes a paper by NIAID grantee Rick Tarleton, Ph.D., of the University of Georgia, Athens, detailing T. cruzi’s proteome--the set of expressed proteins encoded by its genome. This is a significant achievement, notes Dr. Rogers, because T. cruzi, like many parasites, has multiple forms in its lifecycle and produces differing suites of proteins at each stage. The proteomic analysis revealed the presence of numerous stage-specific proteins, providing clues about how the parasite exploits its insect and mammalian hosts. This, in turn, suggests ways to battle the parasite with drugs specific to each life stage, says Dr. Rogers. At present, there are few therapies for Chagas disease, the condition caused by T. cruzi parasites, and the available drugs are ineffective and have significant adverse side effects. Taken together, Dr. Rogers says, the wealth of information contained in the sequenced genomes opens new avenues to tackle these often forgotten diseases.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>