Metals take a walk

Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes ’walking’ a path to their destinations

Do metal complexes casually stroll around certain molecules prior to chemical reactions? Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes “walking” a path to their destinations.

Many types of chemical reactions and new materials depend on the integration of metals with organic (carbon based) molecules. Metals, for instance, assist in transformations of chemical compounds, while materials with many kinds of unique properties often incorporate metals into the molecular structure.

The phenomenon dubbed “ring walking,” for the idea that these metal complexes might move from point to point around organic molecules (which contain the familiar, six-sided carbon rings), had been deduced from experimentation. But proving that ring walking takes place prior to a chemical transformation had not been successfully attempted before. Dr. Milko van der Boom thought that understanding the route the metal takes as it moves from one place to another on the molecule might give chemists a powerful tool for understanding and controlling chemical reactions. Olena Zenkina, a student who came from Ukraine for a summer research program and ended up staying to pursue a Ph.D. in Dr. van der Boom’s group, used Nuclear Magnetic Resonance (NMR) to track the movements of the platinum complexes. They were able to determine how these complexes moved in several steps around the structure of fairly simple organic molecules by undergoing weak molecular interactions at certain junctures. The walking stopped upon arrival at the point on the organic molecule where the chemical reaction occurs. The results of their experiment were confirmed in a computer simulation carried out by the group of Prof. Gershom (Jan) Martin, also of the Organic Chemistry Department. Van der Boom and Zenkina are now conducting research into various aspects of ring-walking. They want to know, for instance, how fast, and how far metals can walk. In addition, they have taken the first steps toward controlling the direction a metal takes in its walk around the molecule. In contrast to today’s approach to chemical transformations, which often involves custom designing sophisticated molecules, learning to direct the routes of metal complexes on the way to chemical reactions might provide a simple and effective alternative.

Dr. Milko van der Boom’s research is supported by the Henri Gutwirth Fund for Research ; ITEK, Israel; the Helen and Martin Kimmel Center for Molecular Design; and Sir Harry A.S. Djanogly, CBE, UK. Dr. Van Der Boom is the incumbent of the Dewey D. Stone and Harry Levine Career Development Chair.

Media Contact

Alex Smith EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors