Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The presence of oxygen on carbon nanotubes enhances interaction with ammonia

12.07.2005


Discovery could help in the development of sensors against chemical threats



Single-walled carbon nanotubes (SWNTs), which could play an important role in developing sensors against chemical threats, have enhanced interaction with ammonia because of the presence of oxygen groups on the nanotubes, researchers at Temple University have discovered.

Their findings, "Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities," are reported online July 8 in the Journal of the American Chemical Society.


Eric Borguet, Ph.D., associate professor of chemistry at Temple and the study’s lead author, said scientists have shown that in using nanotubes for sensors, their conductivity can be changed by the presence of ammonia.

"Theorists have tried for a long time to explain this interaction, and their calculations have typically shown that the interaction between the carbon nanotubes and ammonia is very weak, and in fact, very few ammonia molecules would stick to the nanotubes at room temperature," said Borguet.

But, he said, the theorists are studying pure nanotubes--often referred to as "perfect" nanotubes--with no oxygen.

Through the use of infrared spectroscopy, Borguet and his collaborators believe they are the first to reveal that the SWNT purification process, which introduces oxygen to the nanotubes, changes the interaction with chemical species such as ammonia.

"It is no longer pure carbon; there are oxygen-containing groups on the purified nanotubes," said Borguet. "And it is the presence of those groups that enhances the interaction between the nanotubes and the ammonia molecules at any temperature.

"We take the nanotubes and heat them up to 500 degrees Kelvin and then cool them down to 94 degrees Kelvin, and we see ammonia sticking, but as we go higher and higher in temperature, the ammonia signal is going down," said Borguet.

"One of the things that is happening as we heat to higher and higher temperatures is we are driving off the oxygen-containing functionality," added Borguet. "Once that oxygen-containing functionality is gone, ’poof,’ the ability of the ammonia to stick is gone. But if we re-expose the SWNTs to room temperature and ambient air, the ability to interact comes back."

Borguet said the researchers were not able to detect the oxygen after exposure to air, so the nanotubes may be reoxidizing at a very small level.

He also emphasized that although they are unable to detect the ammonia sticking to the SWNTs at higher temperatures, the lack of detection may be the result of using the infrared spectroscopy technique.

"There may be another technique with a higher sensitivity that can detect the presence of ammonia," Borguet said. "We can’t say there is no ammonia, but if there is, it is below our group’s detection capability."

Borguet said that this discovery of oxygen impacting the interaction of ammonia with the SWNTs could eventually be important in developing small sensors for Homeland Security.

"Ultimately, you’d like to make a chemical nose, a device that can distinguish between chemicals which might have different hazards associated with them," he said. "You’d like to be able to identify the chemicals and what type of concentration might be present.

"These finding are a step in the right direction," Borguet added. "This could be an important discovery because theorists have all been calculating using ’perfect’ nanotubes, but the experiments are not being carried out on ’perfect’ nanotubes.

"The theorists can no longer ignore that there is going to be oxygen-containing functionality when looking at the effects of these nanotubes in the future."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>