Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golden armor

12.07.2005


UCSD scientist’s discovery suggest new way to fight antibiotic-resistant staphylococcus infections



Researchers at the University of California, San Diego School of Medicine and Children’s Hospital and Health Center, San Diego have discovered that "Staph" bacteria use a protective golden armor to ward off the immune system, a finding with the potential to lead to new treatments for serious infections now increasingly resistant to standard antibiotics.

The research, which is featured on the cover of the July 17, 2005 issue of The Journal of Experimental Medicine, focused on the major human pathogen Staphylococcus aureus and the characteristic yellow-orange color for which it is named ("aureus" is Latin for "golden").


Among the deadliest of all disease-causing organisms, "Staph" is the leading cause of human infections in the skin and soft tissues, bones and joints, abscesses and normal heart valves. Staph especially flourishes in the hospital setting, producing bloodstream and surgical wound infections. The spread of antibiotic resistant strains of Staph, referred to as methicillin-resistant Staphylococcus aureus or MRSA, has reached epidemic proportions and poses a major threat to the public health.

The UCSD team proved for the first time that the golden pigment that coats the surface of Staph is not just for decoration; rather, the molecules that give the bacteria its golden hue also help it resist killing by neutrophils, white blood cells with a front line role in immune defense against invading microbes.

Staph’s coloration reflects the production of molecules called carotenoids, similar to those present in carrots and other colorful vegetables and fruits. Dietary carotenoids have long been touted for their antioxidant properties with hope that they could slow aging or fight off cancer. The scientists found that pathogenic Staph took advantage of the antioxidant effects of its carotenoid pigment to extend its own life, by inactivating chemicals deployed by neutrophils that are lethal to most bacteria. The UCSD team used a molecular genetic approach for their studies, knocking out the genes for carotenoid synthesis to generate a mutant strain of Staph that appeared white in color instead of the normal gold.

"We found that the nonpigmented Staph mutant became much more susceptible to oxidants such as hydrogen peroxide and singlet oxygen produced by neutrophils," said George Liu, M.D., Ph.D., a research fellow in the UCSD department of pediatrics who spearheaded the studies. "Without its golden pigment, the Staph lost its ability to survive in human neutrophils or blood, and could no longer form an abscess when injected into the skin of experimental mice."

The investigators proved that the antioxidant effects of the Staph pigment were the key factor in virulence by repeating experiments in blood from a human patient with chronic granulomatous disease (CGD), an inherited disorder in which neutrophils cannot produce oxidants and infections are common, as well as in mice engineered to possess the same genetic mutation. Without the oxidant assault, the ability of the nonpigmented strain to resist neutrophil killing and produce disease was equal to the golden Staph.

The power of the antioxidant pigment in promoting bacterial survival was further established extending the protective properties to a different bacteria. Pigment-producing genes of Staph were cloned into a normally colorless strain of Streptococcus ("Strep") bacteria that then turned yellow in color. The Strep expressing the golden carotenoid pigment became more resistant to oxidant and neutrophil killing, and produced larger ulcers when injected into the skin of normal mice.

"The discovery of the critical role played by golden pigment in protecting against infection provides an novel target for treatment of serious Staph infections including those produced by antibiotic-resistant MRSA," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Staph pigment would disarm the pathogen, making it susceptible to clearance by our normal immune defenses"

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>