Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch protein signaling directs early T-cell development

07.07.2005


A better grasp of immune cell lineages may improve outcomes for transplant, other immunosuppressed patients



Researchers at the University of Pennsylvania School of Medicine have recently clarified the role of the Notch protein in T-cell development. T cells are required for many aspects of immunity, including fighting viral infections, providing cancer surveillance, and regulating multiple aspects of the immune response.

T cells are made in the thymus, a small organ situated under the breastbone near the heart, whose primary function is T-cell production. However, T cells ultimately come from hematopoietic (blood-producing) stem cells in the bone marrow, from which all blood-cell types begin. A progenitor cell leaves the bone marrow to seed the thymus, eventually giving rise to T cells. In the absence of instructions by the Notch protein, T-cell development does not occur, even in the presence of a normal thymus.


In this study–published in the most recent issue of Nature Immunology–the investigators found that Notch, a protein that regulates diverse cell-fate decisions in multi-cellular organisms, is active in very early T-cell progenitors in the thymus of mice. Notch contributes to the subsequent differentiation of these early T-cell progenitors into T cells.

"Notch signaling instructs multi-potent progenitor cell types to enter the T-cell developmental pathway," says senior author Avinash Bhandoola, MD, PhD, Assistant Professor of Pathology and Laboratory Medicine. "However, we don’t yet understand in which tissue these instructions are being delivered, and which cell type is the recipient."

Co-author Warren Pear, MD, PhD, Associate Professor of Pathology and Lab Medicine and member of Penn’s Abramson Family Cancer Research Institute and Institute for Medicine and Engineering, was one of the original discoverers of the role of Notch in T-cell development. His lab developed tools to block Notch signaling, which were key to identifying its function in T-cell progenitors. Findings from this current study suggest that Notch acts very early after progenitor cells enter the thymus, among other probable points in T-cell development.

Notch activates gene transcription in the nucleus of cells, and depending on the biochemical context, it turns certain pathways on, and others off. "To the extent that we know where, and in which cells Notch is acting, we may be able to figure out how Notch works in the thymus," says co-lead author Arivazhagan Sambandam, PhD, Research Associate, also in the Department of Pathology and Laboratory Medicine.

"Studying events in the thymus is important because intrathymic events may be a bottleneck in T-cell reconstitution, which is deficient in post-transplant patients," says co-lead author Ivan Maillard, MD, PhD, Research Associate in the Division of Hematology-Oncology and the Abramson Family Cancer Research Institute. "What the study allows us to do is begin to define exactly where intrathymic Notch signaling happens and where to look for problems and for the relevant molecular interactions."

In many clinical situations, early T-cell progenitors are likely to be deficient–especially in patients undergoing bone marrow or hematopoietic stem cell transplantation, in whom new T cells fail to be produced for long periods of time. In some, especially elderly patients, there is never true recovery of T cells, and such non-recovery is associated with problems such as infections. To improve the outcome of transplant patients, the process of T-cell development needs to be better understood. This may also be important in cancer patients who get profound immunosuppression from treatments and in AIDS patients when T cells are not made at a sufficient rate to replenish the T-cell pool.

The Pear and Bhandoola labs plan to apply the knowledge gained in their basic scientific studies to the clinic. According to Maillard, "In humans, it’s more difficult to look inside the thymus, but we plan to use our unique Notch reagents in model systems to generate hypotheses about the exact nature of Notch control of T-cell development, eventually moving that knowledge to relevant clinical situations."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>