Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch protein signaling directs early T-cell development

07.07.2005


A better grasp of immune cell lineages may improve outcomes for transplant, other immunosuppressed patients



Researchers at the University of Pennsylvania School of Medicine have recently clarified the role of the Notch protein in T-cell development. T cells are required for many aspects of immunity, including fighting viral infections, providing cancer surveillance, and regulating multiple aspects of the immune response.

T cells are made in the thymus, a small organ situated under the breastbone near the heart, whose primary function is T-cell production. However, T cells ultimately come from hematopoietic (blood-producing) stem cells in the bone marrow, from which all blood-cell types begin. A progenitor cell leaves the bone marrow to seed the thymus, eventually giving rise to T cells. In the absence of instructions by the Notch protein, T-cell development does not occur, even in the presence of a normal thymus.


In this study–published in the most recent issue of Nature Immunology–the investigators found that Notch, a protein that regulates diverse cell-fate decisions in multi-cellular organisms, is active in very early T-cell progenitors in the thymus of mice. Notch contributes to the subsequent differentiation of these early T-cell progenitors into T cells.

"Notch signaling instructs multi-potent progenitor cell types to enter the T-cell developmental pathway," says senior author Avinash Bhandoola, MD, PhD, Assistant Professor of Pathology and Laboratory Medicine. "However, we don’t yet understand in which tissue these instructions are being delivered, and which cell type is the recipient."

Co-author Warren Pear, MD, PhD, Associate Professor of Pathology and Lab Medicine and member of Penn’s Abramson Family Cancer Research Institute and Institute for Medicine and Engineering, was one of the original discoverers of the role of Notch in T-cell development. His lab developed tools to block Notch signaling, which were key to identifying its function in T-cell progenitors. Findings from this current study suggest that Notch acts very early after progenitor cells enter the thymus, among other probable points in T-cell development.

Notch activates gene transcription in the nucleus of cells, and depending on the biochemical context, it turns certain pathways on, and others off. "To the extent that we know where, and in which cells Notch is acting, we may be able to figure out how Notch works in the thymus," says co-lead author Arivazhagan Sambandam, PhD, Research Associate, also in the Department of Pathology and Laboratory Medicine.

"Studying events in the thymus is important because intrathymic events may be a bottleneck in T-cell reconstitution, which is deficient in post-transplant patients," says co-lead author Ivan Maillard, MD, PhD, Research Associate in the Division of Hematology-Oncology and the Abramson Family Cancer Research Institute. "What the study allows us to do is begin to define exactly where intrathymic Notch signaling happens and where to look for problems and for the relevant molecular interactions."

In many clinical situations, early T-cell progenitors are likely to be deficient–especially in patients undergoing bone marrow or hematopoietic stem cell transplantation, in whom new T cells fail to be produced for long periods of time. In some, especially elderly patients, there is never true recovery of T cells, and such non-recovery is associated with problems such as infections. To improve the outcome of transplant patients, the process of T-cell development needs to be better understood. This may also be important in cancer patients who get profound immunosuppression from treatments and in AIDS patients when T cells are not made at a sufficient rate to replenish the T-cell pool.

The Pear and Bhandoola labs plan to apply the knowledge gained in their basic scientific studies to the clinic. According to Maillard, "In humans, it’s more difficult to look inside the thymus, but we plan to use our unique Notch reagents in model systems to generate hypotheses about the exact nature of Notch control of T-cell development, eventually moving that knowledge to relevant clinical situations."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>