Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular trigger for Huntington’s disease found

07.07.2005


Researchers have discovered a key regulatory molecule whose overactivation by the abnormal protein produced in Huntington’s disease (HD) causes the central pathologies of the disease. The abnormal HD protein activates the regulatory protein called p53, which in turn switches on a host of other genes. This abnormal gene activation damages the cells’ power plants, called the mitochondria, and kills brain cells.



The researchers also speculated that disturbances in p53 may also play a role in some forms of Parkinson’s disease and amyotrophic lateral sclerosis, or Lou Gehrig’s disease.

Ironically, p53 is the same regulatory protein that is inactivated in a large fraction of cancers. This inactivation allows abnormal cancer cells to escape the cell’s protective "suicide program" that would normally kill them. The researchers theorize that the lower incidence of cancer in HD patients could be caused by the protective effect of overactive p53.


In the July 7, 2005, issue of Neuron, Akira Sawa and colleagues at Johns Hopkins University School of Medicine reported experiments ranging from molecular studies in cultured brain cells to analysis of the brains of human HD patients that demonstrated the central role of p53 in the pathologies of HD.

Their studies with cell cultures showed that the abnormal HD protein selectively binds to p53 and increases its level in cells. They noted that the brains of patients with HD also show substantial increases in the p53 protein, with the highest levels in cases with the most extensive pathology.

The researchers’ experiments also revealed that this p53 increase causes an overactivation in the genes regulated by p53, which is called a "nuclear transcription factor" because it regulates the transcription of its target genes in cell nuclei.

In studies of cell cultures and of mice engineered to have HD, the researchers found that the p53 increase causes malfunctions in mitochondria. What’s more, they found that this p53 increase induced by the abnormal HD protein greatly increases cell death.

The researchers also found effects of the abnormality in p53 in whole animals. They found that deleting p53 suppresses damage to neurons in the eye of fruit flies engineered to have the abnormal HD protein. And in mice with the abnormal protein, knocking out p53 corrects behavioral abnormalities that the mice otherwise display. These behaviors include abnormal reflexes such as an inhibited startle response to loud noise, which is also present in human HD patients.

"In summary, our study establishes a specific role for p53 in HD," concluded Sawa and colleagues. "As p53 is a nuclear transcription factor that regulates various mitochondrial genes and insofar as mitochondrial dysfunction appears important in HD, our findings provide a molecular mechanism linking disturbances of nuclei and mitochondria in HD." Download PDF

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>