Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researches Discover Gene that Determines Asthma Susceptibility by Regulating Inflammation

06.07.2005


Findings offer therapeutic potential for human asthma treatment



Disruption of a single gene, Nrf2, plays a critical role in determining the susceptibility to asthma. A research team led by Shyam Biswal, PhD, at the Johns Hopkins Bloomberg School of Public Health found the absence of Nrf2 exacerbated allergen-mediated asthma in mice models. The study’s findings, published in the July 4, 2005, edition of the Journal of Experimental Medicine, may hold therapeutic potential for the treatment of human asthma.

Asthma is a complex inflammatory disease of the airway characterized by airway inflammation and hyperreactivity. The incidence of asthma has doubled in the past two decades in the United States, affecting 20 million Americans. Controlling inflammation is a focus of asthma therapy. Inflammation occurs when certain cells migrate into the airways. These “inflammatory” cells release reactive oxygen species (ROS), causing the airway lining to swell and restrict. ROS is thought to cause lung tissue damage as well. ROS levels are normally offset by antioxidants in non-asthmatics. Recently, researchers have been hunting for novel genes that regulate inflammation with the hope of developing them as targets for the next generation of asthma drugs.


Suspecting that a defect in antioxidant response exacerbates asthma severity, the team of researchers began looking into the genetic factors that might contribute to this deficiency. In 2002, Biswal’s lab discovered Nrf2 acts as a master regulator of the majority of antioxidant pathways and detoxifying enzymes for environmental pollutants. This led researchers to consider the role of Nrf2 in lung inflammatory diseases caused by exposure to allergens. They found that the absence of the Nrf2 gene increased migration of inflammatory cells into the airways and caused an enhanced asthmatic response in mice. “Nrf2 is critical for proper response to allergens in lungs and maintenance of a balance between ROS production. Antioxidant capability regulated by Nrf2 may be a major determinant of susceptibility to allergen-mediated asthma,” says Biswal. “Nrf2 regulated pathways seem to intervene inflammation at several points.”

The findings provide a better understanding of the human body’s defense mechanisms to stress, which may hold clues to better control the inflammation process and improve control over asthma and its symptoms. Study coauthor Tirumalai Rangasamy, PhD said that the next step for researchers will be to look for molecular mechanism of regulation of asthmatic inflammation by Nrf2 and determine if there are alterations in the response of Nrf2 gene in asthma-prone humans. Future studies will determine the therapeutic potential of targeting Nrf2 for treatment of asthma.

“Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice” was written by Tirumalai Rangasamy, Jia Guo, Wayne A. Mitzner, Jessica Roman, Anju Singh, Allison D. Fryer, Masayuki Yamamoto, Thomas W. Kensler, Rubin M. Tuder, Steve N. Georas and Shyam Biswal.

The study was supported by grants from the National Institutes of Health, the National Institute of Environmental Health Sciences, the Maryland Cigarette Restitution Fund, the Flight Attendant Research Institute and the Thomas and Carol McCann Innovative Research Fund for Asthma and Respiratory Disease.

Contact for the Department of Environmental Health Sciences: Brian Fitzek (443) 287-2905 or bfitzek@jhsph.edu.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>