Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft sheds light on behaviour of cancerous cells

01.07.2005


Thanks to imaging and analysis techniques used by researchers at TU Delft, an international group of scientists has been able to gain more insight into the behaviour of cancerous cells. Delft researchers were the first to establish the changing positions of the ends of chromosomes (telomeres) in cells. It has been discovered that these telomeres behave differently in cancerous cells. An online article on this phenomenon has been published in the important American scientific journal PNAS.



According to Delft researcher Dr. Yuval Garini, the research focused on the structure and organisation of genetic material in the cores of cells, and how this changes in cancerous cells. In these experiments, a specific gene in a cell was disrupted, causing it to become cancerous. The behaviour of the chromosomes in the cell, more specifically the extremities of the chromosomes, called telomeres, were then studied. Previous research had already shown the scientists that, in healthy cells, these telomeres are organised in a well defined structure, which changes during the cell cycle.

The most recent research has shown that this organisation is disrupted in cancerous cells: the telomeres tangle together after cell division. The participating researchers from Delft, but also Canada, Germany en France, have seen how telomeres, and thus chromosomes get tangles in cancerous cells. At each next cell division, these chromosomes break off at random positions. As the open ends of the broken chromosomes are not protected, they look for other chromosomes to join with. The result is undesired combinations of chromosomes.


The role of TU Delft in his research was the numerical mapping and analysis of the changing positions of the telomeres and chromosomes, both in healthy and cancerous cells. To be able to track the telomeres, they were first chemically connected to fluorescent molecules. The labelled telomeres could then be followed with a so-called fluorescence microscope.

The Delft researchers (Dr. Yuval Garini and PhD student Bart Vermolen, from Prof.Dr. Ian Young’s research group) have developed an analysis method to numerically and geometrically record the positions of telomeres during the development of a cell.

By studying the position of the telomeres in the cell core, it may be possible to develop a better way of diagnosing whether or not a cell is cancerous. Also this new insight into the behaviour of telomeres may offer new opportunities for developments in cancer treatment. According to Professor Ian Young , this research project is just one of many at TU Delft in which technological methods are used for medical research. He looks forward to a closer cooperation between the universities of Leiden and Rotterdam in this field.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>