Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA constraints control structure of attached macromolecules

29.06.2005


A new method for manipulating macromolecules has been developed by researchers at the University of Illinois at Urbana-Champaign. The technique uses double-stranded DNA to direct the behavior of other molecules. In previous DNA nanotechnology efforts, duplex DNA has been used as a static lattice to construct geometrical objects in three dimensions. Instead of manipulating DNA alone into such shapes, the researchers are using DNA to control the folding and resulting structure of RNA. Eventually, they envision building supramolecular machines whose inner workings are governed by twisted strands of DNA.



In a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site, Silverman and graduate student Chandrasekhar Miduturu begin with a piece of unfolded RNA. Through specific chemical reactions, they attach two strands of DNA, each resembling one side of a ladder. The two DNA strands spontaneously bind together, then the researchers add magnesium ions to initiate folding of the RNA.

"Folding of the RNA structure competes with formation of the DNA constraint until a chemical balance is reached," Silverman said. "In some cases, the DNA is like a barnacle, just stuck onto the RNA without perturbing its structure. In other cases, the DNA changes the RNA structure. We can predict which situation will occur based on the shape of the RNA and on the attachment points of the DNA constraint."


In cases where the normal RNA shape and the DNA constraint cannot co-exist simultaneously, the balance between competing RNA and DNA structures is controlled by the concentration of magnesium ions, Silverman said.

In work not yet published, the researchers have also shown that the effects of the DNA constraint on the RNA structure can be modulated by external stimuli such as DNA oligonucleotide strands, protein enzymes and chemical reagents.

While Silverman and Miduturu are currently using RNA as a proof of principle for their DNA constraint studies, they also plan to use the new technique to more effectively study the folding process of RNA. Because they can control RNA structure precisely, they could generate and examine biologically relevant folded and misfolded RNAs. They could also hook the DNA constraints to other molecules, including non-biological macromolecules, to control their folding.

Importantly, the process of manipulating macromolecules with DNA constraints can be either reversible or irreversible, depending on which chemical trigger is used. Like a switch, a particular molecular shape could be turned on and off.

"Another key aspect of DNA constraints is their programmability," Silverman said. "By placing two or more constraints on one molecule, we could generate multiple molecular states that would be programmable by DNA sequence. In other efforts, we would like to control macroscopic assembly processes by influencing the shapes of self-assembling molecular components."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>