Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover receptor pathway for C-reactive protein and its effects

24.06.2005


For the first time, scientists have discovered how C-reactive protein, or CRP, is able to access endothelial cells. The UC Davis researchers’ findings will be published in the July issue of Arteriosclerosis, Thrombosis, and Vascular Biology, one of the American Heart Association’s leading journals.



CRP is a known risk marker for heart disease and, in a study published earlier this year, UC Davis researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce CRP, which is increased 100-fold when cytokines are secreted by human macrophages, a key finding that helps to explain how plaque formation is initiated.

Devaraj and Jialal have now discovered how CRP affects endothelial cells, cells that line the cerebral and coronary arteries, and promotes plaque rupture, leading to heart attacks and strokes. CRP appears to bind to a family of immunoglobulin-processing receptors known as Fc-gamma receptors.


"In this study we convincingly show that CRP binds to two members of the Fc-gamma receptor family, CD64 and CD32, and that by blocking these receptors with specific antibodies, we can reverse the detrimental effects of CRP on endothelial cells," said Jialal, the Robert E. Stowell Chair of Experimental Pathology and director of the Laboratory of Atherosclerosis and Metabolic Research at UC Davis Medical Center.

"This is the first time that anyone has shown how CRP is able to get into the human aortic endothelial cells. Fc-gamma receptors CD32 and CD64 are the culprits," said Sridevi Devaraj, associate professor of pathology at UC Davis School of Medicine and Medical Center.

Work at UC Davis and other institutions has shown that CRP induces endothelial cell dysfunction, thus promoting plaque rupture. CRP causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed, in a previous study, that CRP induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces CRP.

"In future studies, we will examine the precise pathways by which these receptors are able to mediate CRP effects so that more specific therapies can be developed to target inflammation," said Jialal.

Coronary heart disease is the nation’s single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

Reducing the concentration of CRP with drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure with angiotensin receptor blockers and diabetes with thiazolidinediones and metformin are also shown to reduce the levels of CRP.

Kelly Gastman | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>