Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinformatics Reveals New Gene Regulation System

23.06.2005


By comparing 140 sequenced bacterial genomes, researchers have uncovered a system for regulating genes essential to bacterial replication - and they did it solely by computer keystrokes and mouse clicks.



Mikhail Gelfand, a Howard Hughes Medical Institute international research scholar at the Institute for Information Transmission Problems (IITP) in Moscow, and his postdoctoral fellow, Dmitry Rodionov, used comparative genomics to identify a new transcription factor system in bacteria that represses expression of genes involved in DNA replication. They scanned gene sequences and proteomes of several taxonomic groups of bacteria, identifying not only a highly conserved signal sequence, but also the regulatory transcription factor that bound it, the repressor nature of the signal, and other genes also regulated by this system.

“We provided a very detailed description of a system just by doing bioinformatics alone,” says Gelfand, director of the IITP’s research and training center of bioinformatics. “It’s a proof of principle that you can go a very long way by comparative genomics now.” Their findings will be published in the July issue of Trends in Genetics, with early publication now online. Gelfand is presenting the work on June 24, 2005, at the annual meeting of HHMI international research scholars in Mérida, Mexico.


Gelfand and Rodionov started their search using a technique called phylogenetic footprinting to review the upstream DNA sequences of a group of genes that code for ribonucleotide reductase enzymes. These enzymes convert the ribonucleotide building blocks of RNA into the deoxyribonucleotides used to build DNA. This conversion is critical for duplicating a bacterium’s entire genome before it divides to reproduce.

The search revealed a conserved palindromic sequence occurring upstream of many ribonucleotide reductase (Nrd) genes. A genetic palindrome is a sequence of nucleotides on one strand of DNA that reads the same as the sequence on the opposite strand, only backwards - a common feature of DNA sequences that are recognized by regulatory molecules. They designated the sequence the NrdR-box.

Because the signal was found in so many diverse groups of bacteria, the researchers thought it might represent a universal regulatory mechanism. The next question was whether the signal was promoting or repressing expression of Nrd genes.

The team observed that their signal always overlapped with the promoter signal, the region of DNA required for the initiation of the conversion of gene to protein. Molecules that promote transcription recognize and bind to this sequence, which lies just outside of the gene. Repressor signals commonly work by allowing other proteins to bind on top of the promoter sequence and physically block promoters. Therefore, the duo predicted that the NrdR-box functioned as a repressor sequence.

Next, the researchers identified the transcription factor protein that binds to the NrdR-box. To do this, they used a bioinformatics approach they call phylogenetic profiling, compiling a list of genomes that clearly contained the NrdR-box and those that clearly did not have it. Then they searched the proteomes of 63 bacteria species, looking for proteins that strictly followed the same present-or-absent pattern as the NrdR-box. Only one protein cluster matched the pattern, and it represented a family of proteins that shared traits of transcription factors.

To strengthen the prediction that these proteins were the transcription factors that bind the NrdR-box, the team used another comparative genomic tool called positional clustering. Positional clustering takes advantage of the fact that functionally related gene sequences (such as the genes for Nrd and its transcription factor) frequently inhabit the same `neighborhood’ of the chromosome.

“If you are looking in one genome, many genes will be neighbors by coincidence,” Gelfand noted. “But if two genes are neighbors in many diverse genomes, then they are likely to be related.” Indeed, the Nrd genes and the transcription factor genes clustered together, providing additional evidence that the regulatory picture drawn by the team was correct.

Israeli researchers simultaneously showed through `wet’ biology experiments in Streptomyces bacteria that a transcription factor from this family represses Nrd gene expression in the living bacterial cell, confirming the Russian researchers’ predictions. Confident that they had identified a new repressor of bacterial genes, Gelfand and Rodionov searched genomes for other upstream sites where the NrdR-box occurred. They found that it regulates other genes related to DNA replication, such as the enzymes that cut, paste, and untangle new DNA as it is synthesized, and enzymes that are involved in recycling nucleotide building blocks.

Although the work does not have direct application to human medicine, Gelfand pointed out that many antibiotics work by attacking the process of bacterial DNA replication. So, he said, this work has identified potential targets for designing new antibiotic drugs. But more importantly, the work shows how molecular discoveries of whole regulatory systems can be made through careful analysis of genomes—without ever lifting a pipette, he said.

“There are 100 enzymes functioning at the core of bacterial metabolism for which the genes are still unknown,” said Gelfand. Using multiple bioinformatics tools can uncover cell systems that might have escaped experimental detection, he suggested. “By comparing hundreds of genomes, you can see patterns that are not seen when looking at just a couple of them.”

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>