Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly helps reveal the secrets of the fragile-X-syndrome

21.06.2005


The fragile-X-syndrome is one of the major causes of mental retardation.



Scientists from VIB (Flanders Interuniversity Institute for Biotechnology), have been studying fruit flies with symptoms similar to those in humans. From this research, it turns out that something goes wrong with the actin skeleton of the neurons in the brain. This process might also take place in human patients with the fragile-X-syndrome - an important step in uncovering the physical background of this disorder.

Mental retardation


The fragile-X-syndrome is the most common hereditary form of mental retardation and occurs much more often in boys than in girls. Children with the fragile-X-syndrome have certain characteristic features, such as a long face with a large chin, protruding ears, and a high forehead. As a child, they frequently have behavior problems and are sometimes hyperactive, agitated, and clumsy. They are usually mentally handicapped, but the degree of handicap differs from person to person. The behavior problems diminish with the onset of puberty, while the mental handicap remains.

A genetic cause

Since 1991, scientists have known which genetic alteration lies at the basis of the fragile-X-syndrome. This alteration causes the FMRP protein (Fragile X mental retardation protein, named after the syndrome) to lose its function. However, up to now, it has not been clear which bodily reactions are blocked by the loss of function of this one gene, given the fact that the FMRP controls the functioning of many other genes as well. Shedding light on this situation is one of the great challenges for researchers who want to better understand the syndrome and, consequently, the functioning and development of the brain.

Research on fruit flies

Bassem Hassan’s group specializes in this area of research, using fruit flies because they contain the dFMRP protein, which is analogous to the human FMRP protein. Just like humans with the fragile-X-syndrome, fruit flies in which the dFMRP gene has been knocked out display behavior problems and disturbances in the brain. It is these modified flies that the research team in Leuven is using as their model system.

Actin and profilin

Their research has led to the discovery that fruit flies that produce no dFMRP in turn produce more profilin. Profilin, a protein, regulates the dynamics of actin, which has a very important function regarding the form and structure of all types of cells, including neurons. Actin acts as a kind of scaffolding that supports the cell and gives it shape. Too much profilin disturbs the regulation of actin, giving rise to abnormal neuron sub-divisions. The researchers found this clearly in the fruit flies that produce no dFMRP.

A new interaction revealed

With this research, Bassem Hassan and his group (Simon Reeve, Laura Bassetto, and Maarten Leyssen) are the first to demonstrate that dFMRP controls the regulation of the actin skeleton. In fruit flies that produce less or no dFMRP, this entire process goes awry and the neurons no longer form the correct patterns. This is probably also the case for humans, and so this research can lead to a better understanding of the fragile-X-syndrome, and also of the brain’s development. Therefore, the researchers now propose to study this result, which they have obtained in fruit flies, in mice models. These mammals, of course, are a rung closer to humans on the evolution ladder.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>