Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Sinkers" provide missing piece in deep-sea puzzle

13.06.2005


One of the biggest questions in modern oceanography is how animals in the deep sea get enough to eat. Marine biologists at the Monterey Bay Aquarium Research Institute (MBARI) recently published a paper that helps answer this question, at least for animals that live on the deep seafloor off the coast of Central California. After analyzing hundreds of hours of deep-sea video, Bruce Robison and his colleagues found that "sinkers"—the cast-off mucus nets of small midwater animals called larvaceans—are a significant source of food for deep-sea organisms. They describe their findings in the June 10, 2005 issue of Science magazine.

Far from being a deserted place, the deep seafloor is inhabited by a wide variety of swimming, crawling, and burrowing animals. Since plants cannot grow more than few hundred meters below the surface, most deep-sea animals either eat their neighbors or feed on material (detritus) that drifts down from above. For decades oceanographers have used funnel-like collectors called sediment traps to measure how much food sinks down to the seafloor in the form of detritus. They have also estimated the amount of food consumed by animals on the seafloor. At many locations, they have found that the amount of food collected in sediment traps is significantly less than the amount of food being consumed by animals on the seafloor.

Over the years, researchers have suggested a number of possible additional food sources for deep-sea organisms that might make up for the lack of food observed in sediment traps. Some researchers have theorized that additional food washes into the deep sea from shallow coastal areas or river plumes. Other scientists have suggested that algal blooms or the sunken carcasses of whales and other large animals could account for the missing food. Robison believes that, although these sources may be important in some areas, they are not persistent enough or substantial enough to account for what is apparently a world-wide phenomenon.



Enter the lowly larvacean. Larvaceans are small, tadpole-like animals related to the tunicates or "sea squirts" found in tide pools. The "giant larvacean" of the genus Bathochordaeus is only about 50 mm (two inches) long, but is widely distributed, occurring in both the Pacific and Atlantic Oceans. Like most larvaceans, it feeds on tiny food particles in the surrounding seawater.

A giant larvacean lives inside two net-like mucus filters, which are collectively called its "house." The outer filter traps coarse particles, and can be up to one meter (three feet) across. The inner filter is slightly more dense, and traps small particles that the animals eats. The larvacean constantly pumps water through both filters, which typically become clogged after about 24 hours of use. At this point the larvacean abandons its house and swims off to create a new one. The cast-off larvacean house eventually deflates like a punctured balloon and sinks rapidly toward the seafloor, carrying large amounts of detritus as well as tiny animals that colonize the mucus.

MBARI scientist Bruce Robison had observed hundreds of these cast-off larvacean houses (commonly known as "sinkers") while exploring the waters of Monterey Bay using MBARI’s remotely operated vehicles (ROVs). After seeing how common sinkers were, Robison wondered if they might be delivering significant amounts of food (in the form of organic carbon) to the deep sea. As he explains, "When it became apparent that sinkers might be important carbon sources, we went around asking other oceanographers if they had seen these things [sinkers] in their sediment traps. It turns out that, although sinkers are relatively common, the odds of a sinker even hitting a sediment trap in the open ocean are extraordinarily small. In addition, sinkers often simply disintegrate when they contact a solid object. So either the scientists were not seeing sinkers at all, or if they did see them, it was in the form of a big glob in the bottom of the sediment trap, which they would typically throw out, assuming it was contamination."

To estimate how much carbon these sinkers might be delivering to the seafloor, Robison first needed to find out how common they were. For ten years (from 1994-2003), he and his research team had been conducting monthly surveys of midwater organisms at ten different depths in Monterey Bay using MBARI’s ROV Ventana. As part of their study of sinkers, the scientists pored over hundreds of hours of video taken during these surveys, counting both inhabited larvacean houses and sinkers themselves.

Knowing the volume of water that was observed during each midwater survey, Robison and coauthors Rob Sherlock and Kim Reisenbichler were able to estimate the overall abundance of sinkers in Monterey Bay. Over the ten-year period, they observed an average of about four sinkers per day for every square meter of deep seafloor. In other words, a patch of seafloor the size of a large dinner plate might receive carbon from about 100 sinkers over a year’s time.

To complete their study, the scientists also needed to know how much carbon each sinker transported to the seafloor. But first they had to collect some sinkers. Since the sinkers could not be collected individually using sediment traps, the team relied on MBARI’s skilled ROV pilots to do the job. Catching bits of drifting mucus using a three-ton underwater robot was no easy feat. As Robison put it, "We collected more than a hundred of these things, and every one of them was a major challenge. About one in four attempts was successful. The patience and skill of those pilots was just amazing."

Back in the lab, the researchers carefully measured the amount of organic carbon in each sinker. Finally, by multiplying the number of sinkers reaching the seafloor times the average amount of carbon per sinker, they were able to estimate how much carbon the sinkers were carrying to the seafloor. To their surprise, Robison and his colleagues found that sinkers were delivering almost as much carbon as was the detritus being collected in sediment traps. They had found an additional food source that was more than adequate to feed all those hungry deep-sea animals.

These findings may seem esoteric, but they have global implications. The inability to account for all the carbon reaching the seafloor has been a major concern not only to oceanographers but also to some climate modelers who are trying to understand global warming. The global carbon cycle is like a complex jigsaw puzzle with many interlocking pieces. Robison’s research may supply a piece of the puzzle that has long been missing.

Research article citation:

B. H. Robison, K. R. Reisenbichler, and R. E. Sherlock, Giant larvacean houses: Rapid carbon transport to the deep seafloor. 2005. Science. Vol. 308 #5728 (June 10, 2005).

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org/news/news_releases/2005/sinkers.html
http://www.mbari.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>