Ancient DNA confirms single origin of Malagasy primates

Yale biologists have managed to extract and analyze DNA from giant, extinct lemurs, according to a Yale study published in a recent issue of the Proceedings of the National Academy of Sciences.

Radiocarbon dating of the bones and teeth from which the DNA was obtained reveal that each of the individuals analyzed died well over 1,000 years ago, according to the senior author, Anne Yoder, associate professor in the Department of Ecology and Evolutionary Biology.

Living lemurs comprise more than 50 species, all of which are unique to the island of Madagascar, which is the world’s fourth largest island and east of Africa. Evolutionary analysis of the DNA obtained from the extinct giants reveals that they, like the living lemurs, are descended from a single primate ancestor that colonized Madagascar more than 60 million years ago, Yoder said.

The biologists extracted DNA from nine subfossil individuals in two of the more bizarre extinct species, Palaeopropithecus and Megaladapis. The first has been likened to tree sloths and the second compared to koala bears. Both ranged in body weights from 100 to 150 pounds, as compared to the largest living lemur, Indri indri, which weighs in at fewer than 15 to 17 pounds.

“The most important conclusion to be drawn from our study is that the phylogenetic placement of subfossil lemurs adds additional support to the hypothesis that non-human primates colonized Madagascar only once,” Yoder said. “However, the limited taxonomic success of our study leaves open the possibility that data from additional taxa will overturn this increasingly robust hypothesis.”

Yoder said the researchers’ results support the close relationship of sloth lemurs (Palaeopropithecus) to living indriids, but Megaladapis does not show a sister-group relationship with the living genus Lepilemur. “The classification of the latter in the family Megaladapidae is misleading,” she said.

Yoder said that damaging effects of moisture, ultraviolet irradiation, and tropical heat on DNA survival likely contributed to the inability to obtain DNA from some species. The only samples to yield DNA from tropical localities were the two individuals that were used as positive controls, Yoder said.

“The results of our study contribute to the mountain evidence that suggests that prospects for ancient DNA studies from the tropics are less promising than those from higher latitudes, but when the results are potentially of such compelling interest, it’s always worth a try,” she said.

Media Contact

Jacqueline Weaver EurekAlert!

More Information:

http://ww.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors