Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use gene transfer technology and common virus to block neuropathic pain

02.06.2005


Pain-blocking effect lasted six weeks in animals; first clinical trial in humans planned



Remember how it felt the last time you burned your finger on a hot stove? Imagine what it’s like to have that burning pain in your hands or feet all the time and know there’s virtually nothing you can do about it. It’s called neuropathic pain, and it’s a common complication of many diseases and medical conditions, especially diabetes. Drugs have little effect on this type of pain, which is caused by damage to sensory neurons that transmit pain, temperature and touch signals to and from the brain.

Now, scientists at the VA Ann Arbor Healthcare System and the University of Michigan Medical School have developed a way to block the signals responsible for neuropathic pain. The secret to their success is based on a virus called herpes simplex or HSV – the same virus that causes cold sores and genital herpes. The scientists use a disabled form of the virus, called a vector, to deliver genes to the nucleus of neural cells.


A study published today in the June, 2005 of the Annals of Neurology describes how laboratory rats with nerve damage showed much less pain-related behavior after receiving injections of the HSV-based vector, which contained a gene called GAD, or glutamic acid decarboxylase. The treatment’s pain-killing effect lasted up to six weeks, and even longer in rats that received additional injections.

The study is the first to demonstrate the successful use of gene transfer technology, using a herpes viral vector, to treat peripheral neuropathic pain in animals. Based on their success in related studies with research animals, the scientists hope to conduct the first clinical study in human patients soon.

"We use the vector to provide targeted gene delivery to the nervous system," says David J. Fink, M.D., the Robert W. Brear Professor of Neurology in the U-M Medical School and staff neurologist at the VA Ann Arbor Healthcare System, who co-directed the research study. "In this case, we’re not trying to correct a genetic defect. Our goal is simply to deliver a gene to sensory nerve cells, so its product can be used to block transmission of pain signals from damaged nerves to the brain."

After removing genes that make it possible for the herpes simplex virus to infect a human host, VA/U-M scientists use it as a carrier to deliver GAD to the nucleus of nerve cells in the dorsal root ganglion near the spine. In previous studies, the researchers have confirmed that the vector remains in the dorsal root ganglion, but an enzyme expressed by the GAD gene moves to nerve terminals in the spinal cord where it triggers production of a powerful neurotransmitter called GABA.

"GABA is the main inhibitory neurotransmitter in the nervous system," Fink says. "It’s like a hall monitor for the nervous system; it damps down neurotransmission between cells to keep things quiet. You can’t have every neuron talking to every other neuron all the time or you’d have chaos."

Other scientists have shown that decreased GABA activity in the spinal cord contributes to the development of neuropathic pain, according to Fink.

Physicians have drugs that block neural transmission by mimicking the actions of inhibitory agents like GABA, but it’s difficult to give these drugs in adequate doses, because the same drug that blocks pain also interferes with brain activity, leaving people drowsy and unable to think clearly. "What we need is a way to release GABA in the spinal cord where it can selectively block incoming pain signals from peripheral nerves," says Fink. "If we can block transmission of the signal at the first neural synapse, it will never reach the brain and you won’t feel pain."

That’s where the herpes-based vector comes in. Although scientists can use many kinds of vectors to transfer genes into living cells, HSV has a natural ability to travel long distances along nerve fibers to reach the neural cell’s nucleus, which makes it the perfect gene delivery vehicle for use in the nervous system.

"When we inject our HSV gene carrier under the skin of a laboratory rat, the vector is taken up by sensory nerve terminals in the animal’s skin and carried through the axon back to the sensory ganglia cell bodies next to the spinal cord," says Shuanglin Hao, M.D., Ph.D., a U-M research investigator and first author of the study.

"Since the vector lacks essential viral genes for replication, it remains in the nucleus expressing the GAD enzyme, which triggers nerve terminals in the spinal cord to release GABA," Fink adds. "As long as the GAD gene remains active, GABA will continue to flood the spinal cord and block the transmission of pain signals to the brain."

In experiments reported in the Annals of Neurology paper, VA/U-M scientists tied off a nerve root in the sciatic nerve leading to the left hind paw of eight rats in the study. Tying off the nerve root makes the nerve degenerate and release substances that cause pain, according to Fink. A second group of eight rats received sham surgery, with no damage to their sciatic nerve. A third group served as normal controls.

"When we study pain in people, we can ask them if it hurts," says Fink. "But you can’t ask questions of a rat. So we study the animals’ behavior to discern whether they are experiencing pain using standard models used to assess pain in rodents."

One of the effects of neuropathic pain is called allodynia, which means that even ordinary touch feels painful. In both rats and people, scientists measure allodynia by touching the skin with a series of filaments or exposing the skin to small amounts of moderate heat. People with neuropathy perceive the filament’s touch or heat as a painful sensation. Rats with neuropathy will lift their paw if the filament or heat produces pain. Rats without neuropathic pain don’t even notice. By monitoring whether rats lift their paw, and how long it takes for them to do so, scientists can measure the degree of pain the animal is feeling.

One week after surgery, some of the rats received injections of the HSV vector with GAD, while control rats did not receive the vector. Rats given the transgene vector had significantly lower pain threshold responses to filament touch and heat exposure tests than rats that did not receive the vector.

"We saw a sustained, continuous pain-suppressing effect that began one week after inoculation with the vector and lasted for six weeks," says Marina Mata, M.D., staff neurologist at the VA Ann Arbor Healthcare System, professor of neurology in the U-M Medical School and co-director of the research team. "By seven weeks after inoculation, the pain-blocking effect disappeared, but a second inoculation into the same paw re-established the effect."

In previous research, Mata and Fink have used their HSV vector to deliver other neurotrophic factors and pain-suppressing drugs to spinal ganglion cells. But Fink says the effect of the GAD-expressing vector is substantially greater for neuropathic pain, because it helps correct the reduction of GABA in the spinal cord. He also emphasizes the excellent safety record of the HSV vector, which has produced no side effects or complications in many animal studies.

"I am a clinical neurologist and I see patients with neuropathic pain," Fink says. "These patients suffer tremendously and the treatments available to us now have limited effectiveness. Using our herpes vector to provide targeted gene delivery to the nervous system is a novel approach that shows tremendous promise for the treatment of neuropathic pain."

In future research, the scientists plan to conduct the first phase I safety trial of a related HSV vector in patients with pain caused by terminal cancer, which has spread to bone.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>