Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating an integrated yeast network

01.06.2005


Scientists have for the first time mapped multiple complex biological interactions in a yeast cell in a simple graphical form, enhancing our understanding of how the networks of interaction by which components of a cell influence one another. New research published in the Open Access journal Journal of Biology shows that such maps can also reveal cryptic interactions and enable accurate predictions about interactions that haven’t been observed experimentally.



A living cell contains thousands of proteins, genes and macromolecules, enmeshed in complex webs of relationships involving direct or indirect contact. At the simplest level, some recurring patterns of interconnections occur more frequently than expected in randomized networks, and these are called ’network motifs’. Lan Zhang from Harvard Medical School, USA, and colleagues found that the concept of ’network themes’ – recurring complex patterns that encompass multiple occurrences of network motifs – allows the building of ’thematic maps’ of interactions between macromolecules that can be tied to biological phenomena and may help represent more fundamental network design principles than do simple motifs.

Zhang et al. integrated five different types of biological relationships found in the yeast Saccharomyces cerevisae: protein-protein interactions, genetic interactions, transcriptional regulation, sequence homology and expression correlation. The authors are the first to integrate so many types of data to search for network motifs. The authors conclude that most network motifs found in the integrated S. cerevisae network can be understood in terms of just a few network themes, associated with specific biological phenomena.


Their results also show that thematic maps can highlight previously unknown relationships between functional modules in a cell. In addition, they can be used to predict interactions that are hard to identify experimentally, or to predict the function of genes involved in specific themes.

According to Markus Herrgard and Bernhard Palsson of University of California, San Diego, the authors’ approach can be readily extended to different types of cellular networks. "[T]he thousands of physical and functional interactions that exist within all cells can begin to be untangled to provide [the] basis for detailed network reconstruction and to elucidate fundamental organizational principles of biological networks."

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>