Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leprosy Microbes Lead Scientists to Immune Discovery

31.05.2005


With the unusual opportunity that human leprosy infections provide for study of human immune responses, scientists have discovered how the body’s early warning system prompts a rapid immune response by two separate armies of defensive cells. The finding helps explain why, when threatened by microbes like the leprosy bug, this initial defense sometimes succeeds in limiting the damage, but in other cases yields to a dangerous, spreading infection.



Led by Stephan R. Krutzik of UCLA, a team of scientists that includes Barry R. Bloom, Dean of the Harvard School of Public Health, reported the work on May 8 in an advance online publication of Nature Medicine.

The researchers isolated immune cells in blood samples from healthy people and exposed the cells to a component of mycobacteria. The large white blood cells known as monocytes rapidly differentiated into the two distinct cell types, forming the body’s emergency response to the detection of foreign bacteria. One category of defensive cells, macrophages, seek out and engulf the infectious bugs. The other group consists of dendritic, or "antigen-presenting" cells, which seize distinctive pieces of the enemy and use them to "educate" and stir up a second immune response, known as "adaptive" immunity.


Until now, laboratory dish experiments hadn’t revealed that the instantaneous or "innate" immune reaction-discovered less than 10 years ago-is mounted by two differently-specialized cells. It had been thought that the initially responding cells were uniformly macrophages, equipped for the two roles. The innate response swings into action when invading microbes are detected by molecules called Toll-like receptors (TLRs) that stick out of the cell’s outer membrane, serving as a trip-wire to raise the alarm. The TLRs spur the monocytes to differentiate into the two rapid response cell types.

Why this matters became strikingly clear when the scientists studied different forms of leprosy for the presence of the two cell types. (One of the types, the microbe-eating macrophages, is labeled DC-SIGN+, while the other, the antigen-presenting dendritic cells, are termed CD1b+). In people who have the form of leprosy known as tuberculoid, or T-lep, the body has made a strong immune response and the infection stays localized to the skin. In patients with lepromatous leprosy, or L-lep, the bacteria have overwhelmed the immune defenses and can spread along nerves throughout the body and may cause blindness.

The scientists found DC-SIGN+ macrophages in both types of leprosy infections. The CD1b+ cells were present only in the milder form, indicating a successful battle against the leprosy bacterium. They were missing, however, in the more severe leprosy infections, meaning that the monocytes hadn’t succeeded in producing those key anti-bacterial fighters.

"The logic here is that because their monocytes are unable to produce the [CD1b+] cells that can mobilize T-cells, these people don’t respond well and become much sicker," commented Bloom. "This research gives us insights about how the body develops protective immunity against bugs that invade our cells-or fails to. Now we know the players, and we would love to look at them in other diseases such as tuberculosis in the lungs and juvenile diabetes."

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>