Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a time-shift, mixed signals from the circadian clock

24.05.2005


Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock within a brain structure known as the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental cycles of light and dark. It is well known, from everyday experience, that adjusting to new light schedules takes several days, though the details of how this adaptation takes place are not well understood.



Researchers now report findings that suggest this adaptation process does not necessarily involve a gradual and synchronous adaptation by the neurons that comprise the central circadian clock--rather, that different components of the clock tend to adapt to a shifted light schedule at two different speeds.

The work is reported in the May 24 issue of Current Biology by a research team led by Johanna H. Meijer of Leiden University Medical Center in The Netherlands.


The researchers studied clock-resetting behavior in rats that were exposed to a six-hour delay of the light schedule, a shift that mimics a transition from the eastern U.S. to western Europe. By performing electrophysiological analysis of cells that constitute the central circadian clock, the researchers made a surprising discovery: one part of the clock mechanism, represented by a dorsal (upper) group of cells, exhibited oscillations in activity that corresponded to slow resetting of the clock in response to the shifted light schedule, while another part of the clock, represented by a ventral (lower) group of cells, exhibited a distinct pattern of activity that corresponded to fast resetting of the clock.

Perhaps contributing to the different behavior of the two groups of clock cells are the effects on these cells of the neurotransmitter GABA, which the researchers found to excite the cells of the dorsal SCN while inhibiting neurons in the ventral SCN. Because GABA transmits information between the ventral and dorsal SCN, such differences in effect might influence, in complex ways, how the two groups of cells adapt to a shifted light schedule.

The authors conclude that the phases of activity in the ventral and dorsal clock shift with different speeds. During a schedule shift corresponding to a transition from the U.S. to western Europe, the ventral part of the clock is immediately synchronized to the new light schedule, but the dorsal part of the clock requires several days to adjust. This results temporarily in bimodal patterns of electrical activity that are generated by the clock within the SCN. Because electrical activity is the output of the circadian clock, the findings suggest that after a significant shift in light schedule, the rest of the brain is transiently--for a duration of about six days--exposed to complex signaling patterns from the circadian clock.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>