Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urbanisation Runs In Frogs’ Blood

20.05.2005


A glance at the frog’s skin can say what kind of blood the amphibia has, the blood composition accounting for frog’s capability to get on alongside human beings. The research by the Ural ecologists has been supported by the Russian Foundation for Basic Research.



The crucial importance for the frog is in the light strip on the back along the spinal column. V.L. Vershinin, Doctor of Biology, specialist of the Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, has discovered close correlation between availability of the strip, composition of its blood elements and frog’s capability to adapt to urban environment.

The amphibia, the first surface vertebrates, are extremely dependent on the environment. Nevertheless, they can bear all “delights” of urbanization: contaminated water bodies, piped brooks and massive asphalt pavement, so the researchers are trying to understand how the frogs can succeed in that. The blood, one of the most dynamic systems, is the quickest to react to any functional changes taking place in the organism. V.L. Vershinin started his effort from investigation of hematologic properties. In Ekaterinburg, the scientist has spent several years investigating the blood of three species of frogs: moorfrog (Rana arvalis), European common frog (Rana temporaria) and waterfrog (Rana ridibunda). Amphibia were caught within the first two weeks of surface life in the vicinity of water bodies, where tadpoles had developed. Depending on the level of man’s impact, the city was divided into four zones. The first zone, encumbered by multistorey blocks of flats, is almost deprived of lawns and water bodies, and the fourth zone – is a forest park, i.e. the recreaton zone of the citizens.


Having drawn blood samples from several hundreds of frogs, the researchers has come to the conclusion that various species differ from each other in terms of blood cell composition. However, there are common regularities. The frogs from urbanized regions have increased amount of phagocytes and erythrocyte precursor cells. Instead, frogs from clean places have a lot of eosinophiles. This is apparently due to parasites with which amphibia from natural populations are infected much more than urban frogs.

There is no doubt that indices of blood influence frogs’ fitness to urban environment. But the frogs differ in appearance. Some of moorfrogs and waterfrogs have a light strip on the back, and some – do not. This strip is hereditary. Thus, the analysis showed that striped variety initially have more erythrocyte precursor cells in the blood. Therefore, it is easier for striped frogs which got into unfavorable conditions to increase the erythrocyte level up to required level. It is not by chance that in the areas with high human impact, it is particularly striped forms of moorfrogs and waterfrogs that prevail. To all appearances, selection happens at early stages of development. Embryos, which are to become frogs without a stripe, perish more often.

Common European frog, which is by origin close to moorfrog, never has stripes. Obviously, it lost striation in the course of evolution. In the blood of common European frog there are initially few erythrocyte precursor cells, therefore, in contaminated areas the species has to spend a lot of energy to bring the amount of erythrocytes up to the required level. This is a disadvantageous strategy. Ecologists have repeatedly pointed out that common European frog is gradually disappearing from urbanized territories, and the striped variety of moorfrog develops these territories.

Recently, there have been multiple discussions about the necessity for preservation of diversity: biological, genetic and specific one. In V.L. Vershinin’s opinion, the data collected by him clearly demonstrate in what way diversity within the species determines successfulness of its existence. Striped frogs differ from their plain sisters by blood composition. If ecologists had not ascertained that, they would have guessed how the strip along the back helps frogs settle in contaminated urban puddles.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>