Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrition Gene Key in Regulating Immune System

18.05.2005


A gene that signals a yeast cell to make bread rise and mice to eat a better diet also helps selectively silence the immune system, researchers have found.



The finding may help explain how a mother avoids rejecting a genetically foreign fetus and provides a new target for treatments to help the immune system ignore other desirables like a transplanted organ. “Think of this like a radio transmitter and a receiver,” says Dr. David H. Munn, pediatric hematologist-oncologist at the Medical College of Georgia and lead author of the study in the May issue of Immunity.

The transmitter is indoleamine 2,3-dioxygenase, or IDO, an enzyme particularly expressed in places such as the gastrointestinal tract and tonsils where the immune system routinely meets up with foreign substances it might want to ignore. Drs. Munn, Andrew L. Mellor and Simon J. Conway published a Science article in 1998 showing IDO’s role in protecting the fetus from rejection by the mother’s immune system during pregnancy. Later they learned that tumors and persistent viruses such as HIV may hijack this mechanism to shield themselves from immune attack. They knew IDO degraded tryptophan, an amino acid essential to the survival of T cells. They weren’t so certain what happened at the receiving end.


The researchers wondered if T cells exposed to IDO might simply starve to death without enough trytophan, one of nine essential amino acids attainable only through food. “If the T cells are just starving, then you don’t need a receiver. They just die. But the T cells didn’t seem to be dying. They seemed to be rendered selectively non-responsive,” says Dr. Munn. “That sounded more like the T cell was participating in this process.”

So the researchers started looking at the few genes known to respond to amino acid levels and found GCN2. GCN2 is present and active in many cells, but its major sites of action are unknown and its role in T cells was unexplored, Dr. Munn says. “GCN2 is a nutrition sensor in yeast,” says Dr. Munn. GCN2 helps yeast know when it has sufficient nutrition to grow; bread keeps rising until yeast run out of nutrition. A paper published in March in Science explores GCN2’s role in mammalian survival by enabling mice to sense they need to eat a well-balanced diet to stay healthy.

Dr. Munn contacted Dr. David Ron, a professor of medicine and cellular biology at New York University School of Medicine’s Skirball Institute, studying the nutritional aspects of the gene. Dr. Ron, a co-author on the Immunity paper, shared a GCN2 knockout mouse he developed and helped the MCG researchers study the gene’s role in T cells. When these knockout mice were exposed to IDO, their T cells simply ignored it. The researchers had found a receiver and possibly more.

“No one had known any gene specifically targeted by IDO, and now we have one,” says Dr. Munn. “We had not known how T cells were turned off. We didn’t know if the T cells just were never activated, or if they were actively suppressed by IDO. They all look like resting T cells. Now we do know that there are differences.”

MCG researchers want to know more about how GCN2 puts T cells to sleep. “Whatever it’s doing doesn’t appear to be killing the T cells. It would be nice to be able to mimic the effect of IDO by using a drug that activates this pathway.” Now that they have a knockout, comparative studies with regular mice can determine other genes that might be impacted downstream of GCN2.

Another big question is whether T cells deactivated by this system can be reactivated. Knowing the role of the GCN2 gene makes it easier for scientists to watch what happens to the T cells affected by IDO in a living organism. “We know that IDO itself is an important pathway. Evidence is emerging that IDO seems to contribute to several important regulatory processes in the immune system,” Dr. Munn says of findings from labs across the country. “But there has been a question in the field about how the IDO expressed in one cell can signal to neighboring T cells. Here’s our first evidence of one way it may do so. By giving you a target in the T cell that IDO is talking to, it helps you understand the system better and we think it also may give us another target for drugs to try to intervene in the system.”

The studies were funded by the National Institutes of Health and the Carlos and Marguerite Mason Trust.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>