Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create mouse model that develops a human-like lymphoma

17.05.2005


Findings demonstrate that abnormal expression of the BCL6 gene causes lymphoma



Researchers at Columbia University Medical Center have created the first mouse model that develops a lymphoma the same way that humans do. This advancement has the potential to significantly speed the development of new, improved therapies for diffuse large B cell lymphoma (DLBCL), the most common type of human B cell lymphoma. Human B cell lymphomas cause 85 percent of non-Hodgkin’s lymphomas, the sixth leading cause of cancer deaths in the United States.

The findings also confirm that a mutation in BCL6, the gene most frequently altered in this type of lymphoma, is the first step in its development, though other subsequent mutations also occur. In the study, mice with a mutant form of this gene spontaneously developed this lymphoma.


Cancer researchers have long been hindered by the lack of animal models to recreate both the genetics and biology of DLBCL. They had no way to test, with reliable accuracy, how an investigational therapy would work in humans with this disease. Also, this lack of animal models has slowed understanding of the BCL6 gene and its precise role in tumor development.

Published in the May 2005 issue of Cancer Cell, the study was led by Riccardo Dalla-Favera, M.D., one of the world’s leading cancer geneticists and lymphoma researchers. Dr. Dalla-Favera is director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Medical Center and NewYork-Presbyterian/Columbia. The HICCC is one of only three NIH-designated Comprehensive Cancer Centers in New York State. He is also director of the Institute for Cancer Genetics at Columbia University Medical center.

Dr. Dalla-Favera and his research team genetically engineered mice to produce a mutant BCL6 gene, showing the specific role of this gene in its pathogenesis and displaying most of the critical features of the corresponding human tumor. These findings expand on Dr. Dalla-Favera’s identification of the BCL6 gene in 1994.

"We are very optimistic that this new model for lymphoma will be a catalyst for new therapies for lymphoma; enabling researchers to first test new potential therapies in animals before humans," said Dr. Dalla-Favera, who is also the Percy and Joanne Uris Professor of Pathology and Professor of Genetics & Development at the Columbia University College of Physicians and Surgeons. "We are already using this new model to develop novel therapies targeted to BCL6, so these mice will be valuable in testing these lymphoma-specific compounds."

This mouse model can also be used to identify the additional genetic alterations that are necessary, in addition to BCL6, to develop diffuse large cell lymphoma.

Additional Columbia investigators associated with the Cancer Cell study include: Drs. Giorgio Cattoretti (Columbia’s Institute for Cancer Genetics and Department of Pathology), Laura Pasqualucci (Institute for Cancer Genetics and Department of Pathology), Subhadra V. Nandula (Department of Pathology), Qiong Shen (Institute for Cancer Genetics), Tongwei Mo (Institute for Cancer Genetics), Vundavalli V. Murty (Institute for Cancer Genetics and Department of Pathology), and Gianna Ballon and Wayne Tam (formerly at the Institute for Cancer Genetics, Columbia University, and presently at the Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University).

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>