Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of 600-million-year old fungi-algae symbiosis discovered in marine fossils

13.05.2005


Is there an evolutionary relationship to land-based lichens?



Researchers from China and the United States have found evidence of lichen-like symbiosis in 600-million-year-old fossils from South China. The previous earliest evidence of lichen was 400 million years old, discovered in Scotland. The discovery also adds to the scarce fossil record of fungi and raises new questions about lichen evolution.

Xunlai Yuan, a paleontologist with the Nanjing Institute of Geology and Palaeontology; Shuhai Xiao, assistant professor of geosciences at Virginia Tech; and Thomas N. Taylor, professor of ecology and evolutionary biology at the University of Kansas, report their finding in the May 13 issue of Science ("Lichen-Like Symbiosis 600 Million Years Ago").


Yuan, Xiao, and their collaborators have been exploring the Doushantuo Formation in South China for a decade and have co-authored numerous reports of fossil discoveries, including algae and animal embryos. Taylor, a member of the National Academy of Sciences, is a paleobotanist who has reported on fossil lichens in Scotland.

Lichen is a consortium of two organisms that collaborate to survive in a harsh environment, such as exposed rock. One partner, a cyanobacterium or a photosynthetic alga, or both, are able to form food from carbon dioxide, while the other partner, a fungus, provides moisture, nutrients, and protection for the consortium.

"When and where did they first learn the tricks to form this collaboration?" Xiao asked. "The earliest lichen fossils described by Professor Taylor were from non-marine deposits about 400 million years old, when plants began to massively colonize the land. But did cyanobacteria or other algae form similar relationships with fungi in the marine environment, perhaps long before the evolution of land plants?"

Present-day examples of such relationships in the sea are abundant. Now, there is an example from ancient ocean life.

At a site where abundant algae lived in a shallow sub-tidal environment about 600 million years ago, Yuan and Xiao found three specimens that have evidence of two partners in a familiar relationship. "Enlargements of thin-section photomicrographs of the tiny specimens -- each of which was less than a millimeter in size -- show fossils of coccoidal or spherical cells surrounded by a net of fine filaments," Yuan said, describing the new fossils.

The scientists interpret the coccoidal cells as being sheathed cyanobacteria or possibly green algae. "The filaments have reproductive characteristics that make us think they are fungi," Xiao said.

Taylor said, "Clearly, there are two kinds of organisms living together and, we believe, interacting in more than a chance association."

In modern lichens and in the 400-million-year-old Scotland fossils, the coccoidal cells provide the nutrients and the fungal filaments provide protection against dehydration. But in the marine environment, dehydration is not an issue and the 600-million-year-old rocks also contain many fossils of coccoidal cells that are not surrounded by filaments. "So it is a loose lichen-like association," said Xiao. "The organisms are not obliged to live together."

Now there is a new question. "We know that this symbiotic relationship was forged 600 million years ago or earlier. But, was it carried over to land, or did each organism invade land and forge a new relationship independent of the marine relationship? If the latter, then the 600-million-year-old relationship may not be the direct ancestor of the 400-million-year-old relationship," Xiao said.

Fungi and algae in modern lichens can easily marry and divorce, he said. "Given the ease with which the symbiotic relationship is formed, I wouldn’t be surprised if the land-based relationships formed independently of the older marine relationships." "In fact, studies of modern lichens demonstrate that the lichen symbiosis evolved many times," Taylor said.

"The ability to form a symbiotic relationship between fungi and algae may have evolved long before the colonization of land by land-based lichens and green plants, which also form symbiotic relationships with various fungi," Xiao said.

"The Doushantuo Formation opens a window into ancient marine life. There is a lot more remains to be learned from these rocks," Yuan added.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>