Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell trial in heart failure patients to begin

12.05.2005


The University of Pittsburgh Medical Center (UPMC) is beginning a clinical trial to evaluate the safety and feasibility of a potential treatment for congestive heart failure that involves injecting a patient’s own bone marrow-derived stem cells directly into the heart muscle. The procedure is expected to be performed in five to 10 patients who are scheduled to receive a heart assist device as a bridge to organ transplantation.



The stem cell trial is one of only a handful that has been cleared by the U.S. Food and Drug Administration (FDA) for heart disease. And because most patients in the UPMC study will eventually receive transplants, the trial represents the first time researchers will be able to examine a human heart treated with stem cells, an opportunity that should help solve some of the mystery as well as resolve scientific debate about just how it is that stem cells work to improve heart function.

Despite advances that have given rise to more effective medical and surgical therapies, including the use of heart assist devices, heart disease continues to exact an economic burden and be a major cause of death in the United States. As such, researchers have looked to the potential of stem cells as a treatment for congestive heart failure and other heart disease. Laboratory studies indicating that a subset of stem cells from bone marrow can generate new heart cells and blood vessels have spawned interest in performing clinical studies. While relatively few such studies have been conducted, and most have been done abroad, preliminary results have shown that blood flow and heart function improve in patients receiving the stem cell therapy.


However, to date, there has been no research in humans that helps explain why such improvements are seen, raising questions that have become the crux of scientific debate about the mechanism and action of these cells once introduced into the heart.

"People have questioned whether stem cells take on the functional characteristics of heart cells or blood vessels, or whether they help recruit other cells and growth factors that have the ability to help regenerate heart tissue. Our study presents the unique opportunity to examine the heart several months after stem cell injections, when the patient’s native heart is removed for organ transplantation, and we’re hopeful we’ll find the answers to everyone’s questions," noted Amit N. Patel, M.D., M.S., principal investigator of the clinical trial and director of UPMC’s Center for Cardiac Cell Therapy. Dr. Patel also is director of the Center for Cardiovascular Cellular Therapy at the McGowan Institute for Regenerative Medicine.

UPMC plans to enroll five to 10 patients. To qualify, patients must have congestive heart failure and require implantation of a ventricular assist device (VAD) as a bridge to transplantation.

Unlike the other FDA-approved trials, surgeons will not deliver the cells through a catheter leading into the heart’s coronary arteries but will instead inject them directly into the diseased heart tissue during the VAD implant surgical procedure. With the patient under anesthesia, Dr. Patel’s team will harvest bone marrow from the patient’s hipbone, and the cells believed to have the greatest therapeutic benefit, CD34+ cells, will be isolated. About three hours later, once the VAD has been implanted and connected to the heart’s main pumping chamber, the ventricle, the cells, together with a small amount of the patient’s blood plasma, will be injected into about 25 to 30 sites of the diseased heart in a process taking no more than five minutes. Depending on their weight, each patient will receive between 25 and 45 million stem cells.

In order to help the researchers better understand what effects the stem cells have on the cellular structures that surround the injection sites, they also will give patients injections containing only plasma to a different area of the heart. That way, once the native heart is removed, pathologists will be able to compare the differences between tissue samples from both areas, as well as make comparisons to tissue samples removed during routine biopsies, which are done at the time of the VAD implantation.

Co-principal investigator of the trial is Robert L. Kormos, M.D., professor of surgery at the University of Pittsburgh School of Medicine, director of UPMC’s Artificial Heart Program and medical director of the McGowan Institute for Regenerative Medicine.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>