Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer researchers shake loose hidden biomarker

12.05.2005


Discovery may pave way for immunotherapies



Using a common chemotherapy agent, researchers at UCLA’s Jonsson Cancer Center and the Department of Pathology and Laboratory Medicine found a way to move an important biomarker expressed in prostate cancer, shaking it loose from one location in a cell – where it could not be accessed by blood – to another, easier to target area. The discovery, outlined in the cover article of May 11 edition of the peer-reviewed journal Molecular Cancer Therapeutics, could have important implications for using immunotherapy to treat prostate cancer, said Ayyappan K. Rajasekaran, a Jonsson Cancer Center researcher and senior author of the article.

The method discovered by the research team places the prostate-specific membrane antigen (PSMA) in a location on the cell that would allow blood-borne immunotherapies to access the biomarker, transforming it from a hidden target into an exposed one. "In prostate cancer cells, PSMA is expressed in the apical region of the cell membrane, which blood can’t reach, so injection of immunotherapy into the bloodstream is not effective," said Rajasekaran, also an associate professor of pathology and laboratory medicine. "By using information from very basic studies about how the PSMA protein is targeted in these cells, we identified a way to redirect this protein within the cell. We found that if we disturbed hollow tubular structures called microtubules, part of the cell’s framework, we were able to relocate PSMA from its ’hidden’ location on the apical membrane to an accessible area in the basolateral surface."


To cause this disturbance and the resulting relocation of PSMA, Rajasekaran and his team employed a commonly used cancer chemotherapy agent, which destroys the microtubules. "These patients are getting chemotherapy anyway, and once we move the PSMA to a more accessible area on the prostate cancer cell, we might be able to use antibody-based immunotherapies as well, and they could be administered in the blood," he said.

Rajasekaran said PSMA is an important biomarker for prostate cancer and its expression in the cell is proportional to the severity of the cancer – the more advanced the disease, the more PSMA is expressed.

Rajasekaran and his team also showed for the first time in this study that prostate cancer cells maintain a well-differentiated morphology, with the PSMA hidden in the apical membrane of the cell, even when the cancer spreads outside the prostate – a fact that hadn’t been proven before. Many researchers, in fact, had believed the opposite was true, Rajasekaran said. So discovering the mechanism of moving the PSMA to a more treatment accessible location on the cell could have ramifications for treating the sickest patients, those in whom the cancer has spread. "The ability to reverse the polarity of PSMA from apical to the basolateral could have significant implications for the PSMA as a therapeutic target," the study states.

Pairing treatments may be even more important for patients with advanced cancers, for whom few options are available, Rajasekaran said. "Chemotherapy alone doesn’t do everything and immunotherapy alone might not do everything, but if could use both, we might have more success in treating patients, especially those whose cancer has spread," he said.

Rajasekaran and his team performed their research in prostate cancer cells lines and plan to validate their findings first in animal models and then in human clinical trials, which could be available in three to four years.

Prostate cancer is expected to strike 232,090 men this year alone, according to the American Cancer Society. Of those, 30,350 are expected to die. Prostate cancer is the second leading cause of cancer death in men.

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Münster University researchers develop new synthesis method for producing fluorinated piperidines
22.01.2019 | Westfälische Wilhelms-Universität Münster

nachricht New blood vessel system discovered in bones
22.01.2019 | Universität Duisburg-Essen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>