Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to prevent cancer

11.05.2005


Scientists at the University of Dundee have identified a way of inactivating a naturally occurring human protein, a development which could offer new routes to developing cancer prevention treatments.



Professor John Hayes and Dr Lesley McLellan in the Biomedical Research Centre at the University, along with Dr Chris Lindsay, have found that the protein, called Keap1, is a target for a new class of cancer prevention treatments.

The researchers say the findings simplify the actions that could be taken to protect cells against cancer-causing chemicals.


"From a scientific point of view this is rather unexpected because previous papers have suggested that inactivation of Keap1 is not sufficient to switch-on anti-cancer defences but that other changes in the cell are also required. Importantly, we have found it is simpler than that. You only have to inactivate Keap1. Just a single target!" said Prof Hayes.

"This could be very important in future development of prophylactic treatments, and also in understanding what can happen in human cells as opposed to animal cells. Humans are not big mice, so to find the cleanest and simplest way of activating this defence system in humans, without causing side-effects, is extremely important."

More than 80% of cancer cases are attributable to environmental factors, and evidence suggests that many forms of malignant disease are avoidable. Well known risks include exposure to sunlight, cigarette smoke, asbestos, alcohol and some mould toxins.

Cancer susceptibility is influenced significantly by diet. We can help protect ourselves against cancer by eating diets that can stimulate natural defences of the cell against harmful chemicals. A large number of compounds found in plants, as well as synthetic food additives, have been shown to possess this ability. Broccoli, Brussels Sprouts, cauliflower, garlic and onion contain some of the compounds that can help prevent cancer. These dietary agents activate protective systems by causing small alterations in the normal antioxidant balance of the cell; this triggers cellular factors to increase levels of antioxidant and detoxification proteins as a compensatory mechanism.

In the past 5 years, experiments in model systems have shown that a protein called Nrf2 is responsible for controlling about 200 genes that are involved in a variety of protective processes in the cell. These Nrf2-regulated genes can provide defence against a spectrum of cancer-causing chemicals. Under normal conditions the Nrf2 protein is very unstable, and each molecule only survives for a few minutes in the cell. The instability of Nrf2 is due to its interaction with another protein called Keap1 that continually directs its destruction.

However, when the antioxidant capacity of the cell is depleted the stability of Nrf2 is increased at least 6-fold. This occurs because Keap1 somehow loses its ability to have Nrf2 targeted for degradation, but the details of this process are currently unclear. The antioxidant-dependent regulation of Nrf2 is a type of negative feedback control that acts to ensure protective genes are maximally switched on when the antioxidant balance of the cell is disturbed. It represents a form of adaptation of the cell to its environment.

As described in a paper published on May 9 in the Proceedings of the National Academy of Sciences USA, the laboratories of Prof Hayes, Dr McLellan and Dr Lindsay have designed a nucleic acid molecule, of the type called siRNA, which interferes with the expression of Keap1.

When introduced into human skin cells, they found that the siRNA against Keap1 caused levels of Keap1 to become depleted, resulting in accumulation of Nrf2 and activation of antioxidant genes.

"This is an important finding because it means that cellular defences can be increased without a need for their antioxidant status to be first compromised, an event that on occasions could lead to lasting damage," said Prof Hayes.

"It means that cells can be pre-prepared for exposure to noxious chemicals. From a scientific point of view, these findings show that inhibition of the function of Keap1 is sufficient to activate protective genes; it is not essential that Nrf2 is activated by chemicals that deplete antioxidant levels before defence genes are induced.

"It should now be possible to define for the first time the human genes that are regulated by the Nrf2/Keap1 pathway. This is important to our understanding of cancer chemoprevention in humans because it is already clear that the Nrf2-dependent response in humans is different to that found in other organisms.

"Furthermore, this study will facilitate identification of the kinds of cancer-causing chemicals that human cells can be protected against by the Nrf2/Keap1-dependent adaptive response. In summary, the findings of the paper suggest that inhibition of Keap1 activity is sufficient to enhance the antioxidant capacity of human cells and that this could help protect against the development of cancer."

| alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prmay05/cancer.html

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>