Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher studies deafness in fruit flies, humans

10.05.2005


University of Iowa Biological Sciences Professor Daniel F. Eberl and his colleagues at Duke University have uncovered genetic defects leading to deafness in fruit flies that may shed light on deafness in humans. Their research paper, "Myosin VIIA Defects, which Underlie the Usher 1B Syndrome in Humans, Lead to Deafness in Drosophila," is scheduled for publication in the May 10 issue of the journal Current Biology.



Eberl says their recent work -- showing that loss of function in the Myosin VIIA gene leads to complete deafness in fruit flies -- has brought scientists one step closer to understanding how such mutations result in inner-ear abnormalities and deafness in humans. "Myosin VIIA was one of the first human hereditary deafness genes to be identified. But it is not clear exactly how this molecule works in the human ear," he says.

Previous evidence suggested that fruit flies and humans rely on the same genes to develop their auditory organs, which in the fruit fly is in the antenna. Eberl’s research shows that at least one molecular component specialized for hearing function, myosin VIIA, is conserved in these ears.


In looking for clues to inherited deafness in humans, Eberl begins with the "love song" of the fruit fly. Although they may seem an odd choice, the fruit fly and its love song are very effective tools for learning about the molecular and cellular mechanisms involved in hearing in insects and animals, including humans, says Eberl, who is trying to identify the genes responsible for hearing in fruit flies.

Whether or not mutant fruit flies can hear the fruit fly love song (actually a vibrating wing) enables Eberl to evaluate the function of genes responsible for hearing. He and his graduate student, Sokol Todi, implant electrodes into the antennas of the flies, and record the voltages the receptor cells generate as the flies listen to the love song. By comparing the electrical impulses generated by the normal flies to those generated by myosin VIIA mutant flies, they showed that the myosin VIIA gene is essential for hearing in flies, as it is in humans.

Now that they know the same molecule is used, scientists will be able to design experiments to test specific mechanisms that have been hypothesized. Eberl says, "These experiments are next to impossible in humans, but quite feasible in the fruit fly."

"Understanding how this protein works and examining its functional role in hearing will provide new insights into auditory mechanisms, not only in fruit flies, but in humans, as well," he says.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>