Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests molecular approaches to brain tumor treatment

10.05.2005


Researchers at Wake Forest University Baptist Medical Center have found promising new molecular targets and treatment approaches for some of the most malignant brain tumors.

Results of three separate studies were presented at the World Federation of NeuroOncology meeting and the European Association for NeuroOncology meeting, both in Edinburgh, Scotland, on May 6 and 7. The research involved glioblastoma multiforme, the most common form of brain tumor and the least curable of all human cancers.

The first study identified a protein that seems to control the malignant features of brain tumor cells, suggesting a new treatment target for anti-cancer drugs. Researchers found that a little-known protein called Fra-1 was effective in controlling vascular endothelial growth factor D, a factor that promotes the growth of new blood vessels in most malignant brain tumors.



"This protein seems to be important in how tumors grow and how they may spread to healthy tissue," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center. "It is a very powerful biological factor and may be an attractive target for anti-cancer therapy."

The second study builds in earlier research by Debinski and colleagues that found that glioblastoma cells have a particular type of receptor for interleukin 13 (IL-13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. IL-13 is a very attractive target for molecular anti-brain tumor therapies and two clinical trials are currently ongoing.

The new study examined the role of proteins called cytokines in augmenting the amount of IL-13 receptor expressed by tumor cells. The use of these cytokines may improve treatment of glioblastoma cells by increasing the levels of IL-13 receptor in brain tumors and thus making them more accessible to drugs targeting the receptor.

The third research study focused on the search for novel specific molecular markers or targets in brain tumors. EphA2, a cell membrane-anchored protein-receptor, was shown to be uniformly overexpressed in malignant brain tumors, but not in normal brain tissue.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski.

Denise Gibo, B.S., Jill Wykosky, B.S., and Nianping Hu, Ph.D., from Debinski’s laboratory contributed to this work.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>