UCR Chemist Part of Team Identifying New Areas of Gene Regulation

Discovery of new location in a key protein that activates genetic activity aided with use of mass spectrometry at UCR

Researcher Kangling Zhang at the University of California, Riverside is part of a team that has discovered a new way that yeast governs genetic expression and repression, a finding that could be repeated in cells of other organisms.

Zhang, an academic coordinator at the Mass Spectrometry Facility of the Department of Chemistry at UCR, worked with Feng Xu and Michael Grunstein of the Department of Biological Chemistry at the David Geffen School of Medicine at UCLA on a paper titled Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast, which was published today in the journal Cell.

The paper focuses on observations of histones, the proteins that regulate genetic expression and form the major supporting structures housing the cell’s DNA. Histones interacting with each other form a ‘spool’ around which DNA is wrapped in the cell. Grunstein, one of the scientists in the current team, discovered in 1991 that sites of histone acetylation, a modification of the protein, play a fundamental role in the regulation of gene activation and repression.

The key findings of the current paper were the discovery of this acetylation at the core of the histone, rather than at the proteins’ ends, which are where most gene regulation is thought to take place. The team used mass spectrometry to show that acetylation at the core of the histone is associated with gene activation by attracting the protein string known as the SWI/SNI chromatin remodeling complex to the location of acetylation.

“In this paper, we used mass spectrometry to identify a novel acetylation site at the lysine 56 of yeast histone H3,” said Zhang, referring to the previously unknown location of a chemical opening to allow genetic transfers to occur. “We found acetylation at this site near the entry-exit points of the DNA superhelix as it wraps around the nucleosome is required for recruiting the nucleosome remodeling complex SWI/SNF and so regulates gene activity,” he said. “We show for the first time that a modification of a histone at the core of the protein, not the end, can regulate genes,” Grunstein added.

The mass spectrometry facility at the UCR’s Department of Chemistry and in the new Physical Sciences building provides super-high sensitivity for research in protein functions and in metabolic profiles of cells. The facility provides service and collaboration not limited to, protein separation, protein identification, sequencing, protein expression level quantification, as well as small molecule structural determination and metabolite identification.

Media Contact

Ricardo Duran EurekAlert!

More Information:

http://www.ucr.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors