Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New Method for Facile Identification of Proteins in Bacterial Cells

04.05.2005


Researchers at the Johns Hopkins Bloomberg School of Public Health have developed a new method for identifying specific proteins in whole cell extracts of microorganisms using traditional peptide mass fingerprinting (PMF). The key to the new method, according to the researchers, is a “shortcut” for preparing samples that makes PMF faster and more economical. By reducing the cost of protein identification, they believe PMF can become an economical tool for monitoring and evaluating the effectiveness of microorganisms used in environmental cleanup. The researchers used a dioxin-eating organism to demonstrate the capabilities of their methodology, which they described in an article published in the May 2005 edition of Applied and Environmental Microbiology.



PMF typically involves elaborate sample preparation. A protein mixture is spread across a gel and separated into individual proteins, which are scooped out of the gel and cut with protein scissors into predictable, small pieces called peptides. The samples are then analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), which identifies protein fragments based on the time they need to travel a defined distance when being accelerated in a vacuum.

In their study, Rolf U. Halden, PhD, PE, assistant professor in the Department of Environmental Health Sciences Bloomberg School of Public Health and his colleagues demonstrate how PMF and mass spectrometry are used to identify a unique dioxin-degrading enzyme in a soup of hundreds of cell proteins. The technique avoids elaborate conventional sample preparation steps by coaxing the cells into mass production of the protein the researchers wish to analyze.


“Finding a specific target in a mixture of hundreds of proteins can be likened to finding the proverbial needle in the haystack; this task can be performed much faster and more economically if you have more needles—and that’s exactly what our method is based on,” explained Dr. Halden. “Instead of spending a lot of time and resources on eliminating the background noise to find the signal, our method increases the signal upfront so that it stands out above the background noise. By forcing an up-regulation of enzyme expression in the bacterium of interest, our target can be identified amidst all of the other cell components,” he said.

Halden and his colleagues tested their technique using Sphingomonas wittichii strain RW1, the only bacterium known to consume the backbone of toxic polychlorinated dibenzo-p-dioxins and dibenzofurans as a food source. The researchers already knew that feeding dioxins to RW1 would cause an increased enzyme level as the bacterium consumed the model pollutant. Their study shows that this increase can be easily identified by PMF using mass spectrometry.

“Our procedure simplifies the entire identification process,” said David Colquhoun, MS, a doctoral fellow with the Johns Hopkins Center for a Livable Future, “With the new tool, we can conveniently and rapidly identify both pollutant-degrading bacteria and their characteristic proteins that effect pollutant transformation.”

“This method represents a new investigative tool in bioremediation, which is the science of using biological organisms as a means of decontaminating polluted soils and water,” said Dr. Halden.

Johns Hopkins University is seeking partners who would like to license this patent-pending methodology. Inquiries may be directed to Deborah Alper at the Johns Hopkins Bloomberg School of Public Health at dalper@jhsph.edu or 443-287-0402.

“Identification and Phenotypic Characterization of Sphingomonas wittichii Strain RW1 by Peptide Mass Fingerprinting Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry” was written by Rolf U. Halden, David R. Colquhoun and E.S. Wisniewski.

Funding was provided by grants from the Johns Hopkins Bloomberg School of Public Health Technology Transfer Committee, the National Institutes of Health Training Grant and the Johns Hopkins Center for a Livable Future.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>