Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers induce heart cells to proliferate

03.05.2005


Could lead to strategies to regenerate tissue after heart attack



In the best documented effort to date, researchers from the Howard Hughes Medical Institute at Children’s Hospital Boston and Harvard Medical School have successfully induced adult heart-muscle cells to divide and multiply.

Heart-muscle cells, or cardiomyocytes, were previously considered incapable of replicating in mammals after birth, which is why heart attack is such a problem: once killed, heart tissue can’t regenerate. Dr. Mark Keating and Dr. Felix Engel now show that an enzyme known as p38 MAP kinase suppresses cardiomyocyte replication, and that inhibiting p38 enables these cells to proliferate. Their report appears in the May 15 issue of Genes & Development (published online May 3).


Keating, Engel and colleagues first showed in fetal rats that increased p38 activity correlates with reduced cardiac growth, and that reduced p38 activity correlates with accelerated cardiac growth. Then, working with adult cardiomyocytes, they demonstrated p38’s role in every major step of cell replication.

First, in cultures of cardiomyocytes from rats, they showed that activation of p38 reduced DNA synthesis, the first key step in cell replication, and that inhibition of p38 increased DNA synthesis. Second, they showed that p38 regulates the activity of genes required for mitosis (division of the cell nucleus in two), a second key step in replication. When mice were bred to lack p38, mitosis in their cardiomyocytes increased by more than 90 percent. Finally, p38 inhibition promoted cytokinesis, the last step of replication in which the entire cell divides to form two separate cells. Growth factors were needed to get the full effect.

"This is just one baby step toward regenerative therapy, but it’s an important one," says Keating. "Inhibiting p38 is now a candidate therapeutic strategy."

When a human heart is injured, it cannot ’’grow back’’ the damaged muscle, which is instead replaced by scar tissue. Too much scarring can impair the heart’s ability to pump and can lead to life-threatening arrhythmias. "If you want to prevent hearts from becoming scarred, a regenerative therapy is needed," Keating says.

Keating, Engel and colleagues are now studying rodents with simulated heart attacks to see whether agents that inhibit p38 would improve heart function and induce heart regeneration with reduced scar formation. Keating believes this approach, if successful, would prove more practical than stem-cell therapy, which would involve implanting whole cardiomyocytes.

"From a practical perspective, we think that delivering proteins or small molecules is much more likely to succeed," he says. "It would be like taking the drug epoetin alfa to stimulate red blood cell production, as opposed to getting a blood transfusion. Instead of borrowing cells, you’re making them yourself."

p38 was chosen for study because it is known to be important in the differentiation of cardiomyocytes. Once cells differentiate into their mature form, they usually lose their ability to proliferate. This study shows that ability can be revived.

Bess Andrews | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>