Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamental genes regulate human blood stem cells

03.05.2005


Credit: Dr. Mickie Bhatia


A study published in the May issue of Developmental Cell identifies specific genes that appear to be key players in the regulation of human-blood stem cells. This work is the first to validate gene expression analysis in human stem cells with functional experiments. The findings also suggest that changes in the expression of genes associated with universal cell signaling pathways can have a substantial impact on human stem cell behavior.

Formation and ongoing maintenance of blood cells begins with a rare cell called a hematopoietic stem cell (HSC) that has the ability to make more copies of itself or differentiate into progenitors that then form red blood cells, various types of white blood cells, or platelets. Blood cells must be constantly renewed throughout the lifetime of an animal, so control and regulation of HSCs is critical for survival. Although it is clear that the capacity for HSC proliferation and differentiation declines with age, not much is known about exactly how HSC physiology is regulated.

Dr. Mickie Bhatia and colleagues from the Robarts Research Institute in Ontario used genome-wide gene-expression profiling (microarray analysis) to examine purified subsets of defined blood-cell populations containing progenitors or HSCs from multiple stages of human development. The researchers identified two genes that act independently to enhance cell-cycle progression and inhibit cell death specifically in HSCs. The role of one gene, HES-1, ties in with previous research pointing to the importance of the cell-cycle-associated Notch signaling pathway. The second gene, HLF, is a DNA-binding transcription factor involved in preventing premature HSC death. Bhatia and colleagues showed that raising the amount of either gene in human HSCs increased their capacity for forming blood cells when they were transferred into mice.



The researchers conclude that HES-1 and HLF are regulators of HSC behavior. Because HES-1 and HLF impact HSC function via two different mechanisms involving integral pathways common to all human cells, the authors suggest that HSC behavior may be controlled by general rather than HSC-specific genes. "Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems and suggest that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior," explains Dr. Bhatia.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>