Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clustering of Hox genes, involved in the determination of body segments, is not necessary for their proper function

02.05.2005


The Hox genes (also known as homeotic genes) play a crucial role in the development of animals, being involved in the determination of segment identity along the body axis. These genes were discovered in the fruit fly Drosophila melanogaster 90 years ago and have been found later in all animals, including humans. The Hox genes are arranged in the fly genome in a striking manner: they are clustered and their order is the same as that of the body segments they act upon. This organization is conserved in the genome of most animals where the Hox genes are arranged in a similar way as in the fly genome. Its conservation during hundreds of millions of years suggested that this organization must have an important effect on the function of Hox genes, although the cause of their clustering is still controversial.



A research group of the Department of Genetics and Microbiology of the Universitat Autònoma de Barcelona (Spain), led by Professor Alfredo Ruiz, with the colaboration of the Molecular Biology Center Severo Ochoa (Madrid, Spain), The University of Cambridge (UK), and the Children’s Hospital Oakland Research Institute (USA) has found that the Hox gene complex has been rearranged differently in several Drosophila species. The function of Hox genes seems to be conserved despite the rearrangements. Thus Hox gene clustering in the Drosophila genome seems to be the result of evolutionary history more than that of functional necessity. The research will appear in this week’s issue of the scientific journal Genome Research.

The scientists analyzed the genome region where the Hox genes are located in three Drosophila species, D. buzzatii, D. melanogaster and D. pseudobscura. These species possess differents organizations of the Hox gene complex as a result of the splits of the original complex present in the ancestor during the last 60 millions years. They also observed that the dispersion of Hox genes does not affect their expression and consequently their function. Therefore, at least in the fruit fly, the clustering of Hox genes is not necessary for their proper function.


The fruit fly Drosophila is not the only exception to the rule of ordered arrangement of Hox genes. Some worms and marine invertebrates also show breakages of the Hox gene complex. What do these organisms have in common with the fruit fly? The scientists point that in the embryo development of all these organisms, the Hox genes are not activated in a temporal succession, as it occurs in most animals, for instance humans. Rather, the Hox genes are activated more or less simultaneously according to a very fast embryo development. The simoultaneous expression of Hox genes appear to make their clustering at a single genome site unnecessary. Therefore the Hox gene complex in these animals is disintegrating.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>