Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eliminating enzyme dramatically reduces cardiovascular disease

29.04.2005


How does cholesterol in our diets end up as artery-clogging plaque that can cause heart attacks and strokes? Research in animals suggests that a little-studied enzyme may play a major role – and that drugs to target it could dramatically reduce the risk of cardiovascular disease.



Lawrence Rudel, Ph.D., from Wake Forest University School of Medicine, presented new results from his research on ACAT2, a cholesterol transforming enzyme, today at the American Heart Association’s Sixth Annual Conference on Arteriosclerosis, Thrombosis and Vascular Biology in Washington, D.C.

"Our research in animals tells us that ACAT2 is a potential treatment target to protect people against heart disease," said Rudel, a professor of and pathology (comparative medicine) at the School of Medicine, which is part of Wake Forest University Baptist Medical Center.


Cholesterol is made by the liver and also supplied through such foods as meat, fish and dairy products. According to the American Heart Association, cholesterol is needed to insulate nerves, make cell membranes and produce certain hormones. However, because the body makes enough cholesterol on its own, too much dietary cholesterol is associated with an increased risk of heart disease.

Rudel’s work focuses on an enzyme that alters the molecular structure of cholesterol so that it can be transported to the body’s cells. There are three different enzymes (ACAT1, ACAT2 and LCAT) that can change cholesterol into a form that can be more easily carried in blood.

Studies in both mice and monkeys show that cholesterol altered by ACAT2 is more likely to build up in blood vessel walls and cause atherosclerosis. In studies of genetically altered mice that do not produce ACAT2, levels of atherosclerosis are 85 percent lower than animals producing ACAT2.

"Mice without ACAT2 don’t get atherosclerosis," said Rudel.

Recently, Rudel and colleagues confirmed these results in normal mice by using a molecule that blocks the effects of ACAT2. This study, reported for the first time today, will be followed by a pilot study in monkeys.

Rudel hopes the research will lead to a drug that can inhibit the enzyme’s production in humans. Scientists already know that humans produce ACAT2 and that women have lower levels than men. Research has shown that estrogen can lower ACAT2 production, which may explain why women are less likely than men to get heart disease during their estrogen-producing years.

"All of these findings tell us that a potential treatment for protecting against heart disease is a compound that decreases ACAT2 activity," said Rudel.

He said that one day, it may be considered important to test how much of patients’ cholesterol was altered by ACAT2, in addition to testing their levels of high-density lipoprotein ("good") and low-density lipoprotein ("bad") cholesterol.

"Reducing the risk of heart disease appears to involve more than affecting the levels of good or bad cholesterol," said Rudel.

Rudel is also studying how the three enzymes are activated to alter cholesterol. Evidence suggests that a diet high in mono-unsaturated fats, which include olive oil, nuts and nut butters, avocado and sesame seeds, may stimulate transformation by ACAT2.

In a study of monkeys, those that were fed a diet high in monounsaturated fat got just as much heart disease as monkeys that were fed saturated fat, even though their levels of "bad" cholesterol decreased.

"Monkeys eating monounsaturated fat had all of the positive risk factor changes, but they still got heart disease," said Rudel. "What didn’t go in the right direction? We believe it may that more of the cholesterol was transformed by ACAT2."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>