Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein crucial for survival of Lyme-disease bacterium

26.04.2005


When the tick-borne bacterium that causes Lyme disease lacks a specific protein that responds to an incoming meal of blood, it is unable to be transmitted from the tick to a new animal host, researchers at UT Southwestern Medical Center have found. The findings suggest that the protein, called BptA, is essential for the bacterium Borrelia burgdorfei (Bb) to survive in the gut of its tick host and may offer a potential new target for agents aimed at eradicating Lyme disease.



Results of the multisite study are currently online and will appear in an upcoming issue of the Proceedings of the National Academy of Sciences. The bacterium that causes Lyme disease lives in infected mammals and in the midgut of ticks. When an infected tick bites an animal or a human, the bacteria are transmitted to the new host. Infection causes fever, malaise, fatigue, headache, muscle and joint aches, and a characteristic "bull’s-eye" rash that surrounds the site of infection.

In the study, researchers genetically altered the Bb bacterium to make a "knockout" form that lacked a gene that codes for the protein BptA. Without the protein, bacteria were unable to utilize the blood on which the tick feeds when it bites a victim.


"As far as we can tell, Bb bacteria normally utilize blood as their main nutrient source, just as the tick does," said Dr. Michael Norgard, chairman of microbiology at UT Southwestern and senior author of the study. "When the tick is not feeding, and no nutrients are coming in, the bacteria are sort of in a quiescent state, waiting in the tick’s midgut, which is equivalent to our digestive system."

When blood enters the tick gut, Dr. Norgard said it appears that changes in temperature and acidity signal the bacteria that the nutrient is present, triggering the bacteria to replicate in large numbers and migrate to the tick’s salivary glands, where they are transmitted into animals or humans during the tick’s feeding process. The energy for replication is believed to come from the proteins and nutrients made available as the tick breaks down whole blood.

"For some reason, bacteria lacking the BptA protein either can’t utilize the blood meal in the way the wild-type bacteria do, or something about the blood becomes hostile to them," said Dr. Norgard, who holds the B.B. Owen Distinguished Chair in Molecular Research. "Instead of helping the bacteria, the blood harms them. Ultimately, as the tick feeds on blood and begins to go through its molting process, the levels of the knockout Bb bacteria in the tick drop by about 90 percent, which is a very dramatic decrease." In the study, each time infected ticks fed, bacteria levels within them dropped until they eventually were zero.

"We’re not sure whether the lack of the BptA protein ultimately kills the bacteria or inactivates them," Dr. Norgard said. "But certainly it prevents them from replicating in the manner that they should to sustain the numbers needed to move from the midgut to the salivary glands. We don’t understand the mechanism for that yet, and that will be the next step in our research."

Further study of the function of the BptA protein could give researchers additional clues as to how the organism has evolved to survive in ticks and why it has chosen a tick environment to be its natural vector in nature. "It potentially could give us a target for eradicating the bacterium, because if you understand what it needs to sustain itself, then in theory you could disrupt that cycle by blocking whatever that mechanism is," Dr. Norgard said.

Traditionally, scientists studying pathogens have looked at genes that affect how the infecting organisms behave once inside a human host. What tends to get ignored, Dr. Norgard said, is the other side of the coin. "This organism has to live half of its life cycle in a tick," he said. "There must be subsets of genes important to its survival there. If it can’t exist in ticks, it can’t maintain itself in nature and hence can’t infect animals or humans."

UT Southwestern molecular microbiology graduate student Andrew Revel, a lead author of the study, found the bptA gene by screening a number of candidate genes he thought might be affecting the survivability of Bb within its hosts. The research team had hypothesized that the elimination of the gene would somehow impact the pathogenesis of Lyme disease in mammals, but they found no evidence of that. Knockout bacteria not only survived within mice, but also produced Lyme disease in the animals.

"That’s when we began to look more in the tick," Dr. Norgard said. "It wasn’t until we went through the later stages of tick feeding – allowing the ticks to feed on mice, waiting a couple of months for the tick to molt, then refeeding them – that we began to see the effect. Our results required a much more comprehensive assessment of the total life cycle of the bacterium, as opposed to just focusing on the mammalian infection, which is what many scientists tend to do."

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>