Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how plants disarm the toxic effects of excessive sunlight

26.04.2005


A newly discovered pathway by which cells protect themselves from a toxic byproduct of photosynthesis may hold important implications for bioenergy sources, human and plant disease, and agricultural yields, a team of University of Wisconsin-Madison bacteriologists announced Monday in the Proceedings of the National Academy of Sciences.



Plants turn energy from sunlight into bioenergy through a chemical process called photosynthesis, which also produces oxygen in its breathable form. However, photosynthesis can also generate an alternate form of singlet oxygen, which is a highly reactive and toxic substance that destroys biological molecules. "We’ve discovered a pathway that cells use to turn on certain genes and respond to singlet oxygen," says Timothy Donohue, a professor of bacteriology in the university’s College of Agricultural and Life Sciences and lead researcher on the paper. "This finding should make it possible to modify plants and other photosynthetic cells to avoid the toxic effects of singlet oxygen, which could impact agriculture and the treatment of human and plant disease, and aid the effort to create alternative bioenergy sources," Donohue says.

Donohue and his group studied a photosynthetic microbe and identified the cellular pathways it used to sense the presence of singlet oxygen and defend itself from this toxic substance. He notes that the response mechanism is likely highly conserved across species from microbes to plants and humans - and therefore very applicable to other fields of study. For example, too much sunlight can actually be harmful to plants, because the heightened photosynthetic activity also means an increase in singlet oxygen. By modifying plants to enhance the protective pathway, "we could be able to get larger crop yield per photon of light," he says.


And by making cells more resistant to singlet oxygen, scientists may be better able to design bioenergy systems that use sunlight as an alternative to traditional fossil fuels. "By understanding how biology solves this problem, we can fine-tune the design of these systems to minimize the harmful effects of singlet oxygen and enhance energy production."

Reactive oxygen also plays an important role in human, animal and plant health, because it is often used as a host defense to inhibit the growth of unwanted microbial pathogens. In fact, it appears that even non-photosynthetic bacteria, including human and animal pathogens like Vibrio and Pseudomonads have systems to sense and protect themselves from singlet oxygen, says Donohue. Other reactive oxygen species - often called "free radicals" - are thought to be at the root of many debilitating diseases. "There have been considerable advances in our understanding of how cells protect themselves from several reactive oxygen species," says Donohue. "However, nothing has previously been known about how cells alter gene expression to respond to singlet oxygen. We may now be able to design pharmaceuticals that target this response, and ultimately may help us mitigate disease."

Donohue’s co-authors on his study were a microbiology graduate student, Jennifer Anthony, and a bacteriology undergraduate, Kristin Warczak. The project was supported by a grant from the National Institute of General Medical Sciences, the University of Wisconsin-Madison Distinguished Fellowship Program, and the University of Wisconsin-Madison Hilldale undergraduate research scholars program.

Cells that grow by photosynthesis use chlorophyll to absorb solar energy. The following NASA satellite image maps chlorophyll concentrations on land as well as in oceans, lakes and seas. This image provides a snapshot of photosynthetic capacity and significant sources of singlet oxygen, a toxic byproduct of photosynthesis, in the biosphere. See the image at: earthobservatory.nasa.gov/Observatory/Datasets/bios.seawifs.html earthobservatory.nasa.gov/Observatory/Datasets/bios.seawifs.html

Tim Donohue | EurekAlert!
Further information:
http://www.bact.wisc.edu

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>