Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule on immune cells linked to sexual transmission of HIV

25.04.2005


UCLA AIDS Institute discovery points to new drug target



Scientists have long suspected that HIV hijacks immune cells called dendritic cells to infiltrate the immune system. Now UCLA AIDS Institute researchers have shown that blocking HIV’s access to a naturally occurring molecule on dendritic cells may cut their ability to smuggle the virus into other immune cells. Published in the May edition of the Journal of Virology, the discovery may lead to new drugs to prevent sexually transmitted HIV infection.

"Dendritic cells act like sentries to alert the immune system when a foreign agent tries to infiltrate the body," said Dr. Benhur Lee, UCLA assistant professor of microbiology, immunology and molecular genetics. "They also produce a molecule called DC-SIGN that plays a critical role in the sexual transmission of HIV. We wanted to see what would happen if we blocked how DC-SIGN functions in its natural environment."


Dendritic cells reside in the mucosal linings of the mouth, gut, genital and urinary tracts -- sites where sexually transmitted HIV often enters the body. By examining biopsies of human rectal tissues, the UCLA team was the first to study DC-SIGN on dendritic cells in their natural setting instead of a test tube.

Using a sugar-like compound that binds to DC-SIGN and a DC-SIGN-seeking antibody, the scientists were able to block HIV from binding to these dendritic cells.

"Our findings suggest that preventing HIV from binding to the dendritic cells may block their ability to carry HIV to other parts of the immune system," Lee said. "Our next step will be to investigate if this is true."

"We believe our findings point to a new therapeutic target for preventing HIV infection," said Dr. Peter Anton, UCLA professor of medicine. "Drugs could be developed to block the interaction between HIV and DC-SIGN, potentially reducing HIV’s ability to spread infection at mucosal routes into the body."

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>