Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study finds snow melt causes large ocean plant blooms

22.04.2005


A NASA funded study has found a decline in winter and spring snow cover over Southwest Asia and the Himalayan mountain range is creating conditions for more widespread blooms of ocean plants in the Arabian Sea.





The decrease in snow cover has led to greater differences in both temperature and pressure systems between the Indian subcontinent and the Arabian Sea. The pressure differences generate monsoon winds that mix the ocean water in the Western Arabian Sea. This mixing leads to better growing conditions for tiny, free-floating ocean plants called phytoplankton.

Lead author of the study is Joaquim Goes. He is a senior researcher at the Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine. Goes and colleagues used satellite observations of ocean color to show phytoplankton concentrations in the Western Arabian Sea have increased by more than 350 percent over the past seven years. The study is in this week’s SCIENCE magazine


When winter and spring snow cover is low over Eurasia, the amount of solar energy reflected back into the atmosphere is less. A decline in the amount of snow cover means less of the sun’s energy goes towards melting of snow and evaporation of wet soil. As a result the land mass heats up more in summer creating a larger temperature difference between the water of the Arabian Sea and the Indian subcontinent landmass.

The temperature difference is responsible for a disparity in pressure over land and sea, creating a low pressure system over the Indian subcontinent and a high pressure system over the Arabian Sea. This difference in pressure causes winds to blow from the Southwest Arabian Sea bringing annual rainfall to the subcontinent from June to September. In the Western Arabian Sea, these winds also cause upwelling of cooler nutrient-rich water, creating ideal conditions for phytoplankton to bloom every year during summer.

Since 1997, a reduction in snow has led to wider temperature differences between the land and ocean during summer. As a consequence, sea surface winds over the Arabian Sea have strengthened leading to more intense upwelling and more widespread blooms of phytoplankton along the coasts of Somalia, Yemen and Oman.

According to Goes, while large blooms of phytoplankton can enhance fisheries, exceptionally large blooms could be detrimental to the ecosystem. Increases in phytoplankton amounts can lead to oxygen depletion in the water column and eventually to a decline in fish populations.

The Arabian Sea hosts one of the world’s largest pools of oxygen-poor water at depths between 200 and 1,000 meters (656 to 3,281 feet). Since the Arabian Sea lacks an opening to the north, the deeper waters are not well ventilated. Also when organic matter produced by phytoplankton breaks down and decomposes, more oxygen gets consumed in the process. An increase in phytoplankton could therefore cause oxygen deficiencies in the Arabian Sea to spread, leading to fish mortality.

Oxygen-depleted waters also provide the perfect environment for the growth of a specialized group of bacteria called denitrifying bacteria. These bacteria convert a nitrogen-based nutrient readily consumable by plants in seawater, called nitrate, into forms of nitrogen that most plants cannot use.

One form of nitrogen that plants cannot consume is nitrous oxide, also known as laughing gas. In the atmosphere, nitrous oxide is 310 times more potent as a greenhouse gas than carbon dioxide. Thus, as very large phytoplankton blooms deplete more oxygen from the water, the creation of nitrous oxide in the Arabian Sea could exacerbate climate change, Goes said.

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.hq.nasa.gov

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>