Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data effort improves flow toward ’greener’ chemistry

22.04.2005


Jeopardy answer: Death Valley and "ionic liquids." Correct question: Where does a little bit of water make a whole lot of difference?


Molecular "space filling" models demonstrate the difference in size for the positively charged "anion" (top image) and the negatively charged "cation" (bottom left) that combine to form a promising ionic liquid. It is still a mystery how the much smaller water molecule (right) can have such a large effect on the viscosity of such ionic liquids.



Scientists at the National Institute of Standards and Technology (NIST) report* that flow properties for a relatively new class of alternative solvents called ionic liquids are extremely sensitive to tiny amounts of water. For example, for one of these solvents, just a 0.01 percent increase in water dissolved into a sample, caused a 1 percent decrease in flow resistance--a 100-fold effect. The finding should be helpful in the design of new industrial processes such as chemical separations that are both more efficient and more environmentally friendly.

Ionic liquids are salts. Just like table salt, ionic liquids consist of two components, one positively and one negatively charged. Unlike most simple salts, however, most of these new solvents are liquid at room temperature.


"People in industry are very interested in using ionic liquids because unlike most organic solvents, they don’t evaporate and they are not flammable," explains NIST’s Jason Widegren, lead author on the paper.

However, before ionic fluids can be used widely in industrial processes, reliable property data on characteristics like flow resistance (viscosity), density and thermal conductivity must be collected.

The new data help explain why reproducible measurements of viscosity for ionic liquids have been very difficult to achieve and published results have differed by 30 percent or more. Even the slightest contamination of samples with water vapor absorbed from the air dramatically affects measurements. The NIST group avoided these problems by carefully drying their samples and measuring water content both before and after each viscosity measurement.

The NIST work is part of a larger effort, conducted in conjunction with the International Union of Pure and Applied Chemistry, to perform "round robin" thermophysical property testing on the most promising ionic fluids and make the resulting data available to the scientific community.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>