A puzzle piece found in unraveling the wiring of the brain

The complexity of the brain and, more specifically, how nerve cells form billions of contacts when there are fewer than 30,000 human genes is still a scientific mystery.


A team headed by Drs. Robin Hiesinger and Hugo J. Bellen at Baylor College of Medicine in Houston have unraveled a piece of that puzzle by finding a gene that plays a key role in brain wiring. A report on their work appears today in the journal Neuron.

“We were surprised to find an exocyst mutant having such specific defects,” said Bellen, professor of molecular and human genetics at BCM. “The cell biological basis of brain wiring is largely unknown. We are happy to have a new handle on an old problem.”

Using sophisticated genetics applied to the brain of the fruit fly, Drs. Sunil Mehta and Hiesinger found a gene named sec15 that is required for nerve cells to make appropriate choices of targets on which to act.

The Sec15 protein is part of a protein complex (the exocyst) which is known to be required for secretion (or exocytosis) of vesicular compartments in yeast. Vesicular compartments are small organelles that transport proteins from one site to another in the cell.

Neurons in the fly brain that lack sec15 not only display aberrant wiring patterns, but also show misplacement of proteins required for correct nerve cell contact choices.

Most of these cell contact proteins were previously known to display highly dynamic expression patterns in both time and space, but how they are put at the right time and at the right place remains to be shown. This study answers part of that question.

Others who participated in this work include Dr. Mike Crair of BCM, Drs. R. Grace Zhai, Karen L. Schulze, Patrik Verstreken, Yu Cao and Yi Zhou from the Howard Hughes Medical Institute at BCM and Drs. Slobodan Beronja and Ulrich Tepass from the University of Toronto.

Media Contact

Ross Tomlin EurekAlert!

More Information:

http://www.bcm.tmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors