Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Used in a new way, RNA interference permanently silences key breast cancer gene

21.04.2005


In laboratory mouse experiments, researchers at The University of Texas M. D. Anderson Cancer Center have developed a way to use RNA interference (RNAi) so that it permanently hampers breast cancer development. The technique permanently silences activated STAT3, a crucial gene found in some human breast tumors, thus reducing the cancer’s ability to become invasive.

The study, presented at the annual meeting of the American Association for Cancer Research (AACR), used a modified form of RNAi to silence STAT3 in a permanent way. Typically, only a transient effect is achieved with RNAi before the tiny bits of genetic material are become inactive as the cell population continues to expand.

"We are a long way from using this technique in patients, but this study shows that that it may be possible to use RNAi in more than just experiments that silence genes temporarily," says the study’s principal investigator, Ralph Arlinghaus, Ph.D., a professor and chair of the Department of Molecular Pathology. Details of the study appeared in the April 1 2005 issue of the journal Cancer Research. "The technique is also providing some valuable insights into the role of STAT3 and its downstream targets," adds Arlinghaus, who also will discuss the work in a mini symposium at the AACR meeting.



RNAi has been employed as a laboratory tool to knock down expression of genes in a variety of cells and organisms. It works by introducing a small double-stranded RNA (RNAi) that specifically targets a gene’s product, its messenger RNA. This action then blocks translation and production of the protein that the gene encodes.

In this study, the researchers used a lentivirus (a type of retrovirus) to deliver a specifically designed long-acting small interfering RNA (termed a short hairpin RNA, shRNA) for mouse STAT3 into a mouse breast cancer cell line. They chose STAT3 because when activated, it is involved in the formation of multiple types of tumors, including breast cancer. When hijacked by a cancer cell, the activated gene is believed to interfere with the ability of key immune cells to attack a growing tumor.

Investigators used the lentivirus to permanently insert the RNAi into the genome of the cancer cell. After a single exposure of this delivery system, they found 75 percent of laboratory breast cancer cells stopped expressing the STAT3 protein. The researchers also discovered that expression of a protein called TWIST that is known to be involved in cancer metastasis was drastically reduced in the STAT3 knockdown cells, thus greatly reducing the ability of these cancer cells to invade normal tissues like the lung. "Somehow STAT3 is controlling TWIST expression, and this is important to know with regards to activated STAT3 and its involvement in cancer metastasis," Arlinghaus says.

When the mouse breast cells transduced with STAT3, shRNA were then tested in immunocompetent mice, researchers found that the treated breast cancer cells were unable to form breast tumors either at the site of injection or at distant sites typically involved in metastatic breast cancer in this mouse model.

Arlinghaus points out that a human therapy based on these findings is not on the horizon because lentivirus delivery systems haven’t been approved for human use yet, and because of the many problems associated with treating metastatic breast cancer. But he says that proof that RNAi can be used to permanently silence such critical genes as STAT3 "has potential application for treating breast cancer."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>