Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method shows how precisely gene expression signals are copied in DNA replication

20.04.2005


Genetic information that determines hair color or whether an individual might develop a particular cancer is passed from one generation to the next through DNA. Genes encoded in the DNA contain information, but a process called methylation is one factor that often controls how that information is expressed.



A group of University of Washington researchers has devised a method that combines DNA sampling and mathematical modeling to find out how accurately methylation patterns are copied during DNA replication. That could pave the way for understanding the role methylation plays in normal gene expression and how it factors in the development of human disease.

In methylation, a methyl group (made up of a carbon atom and three hydrogen atoms) is attached to a specific gene sequence in one part of DNA. The density of methyl saturation determines how the gene is expressed. The densest saturation turns the gene off so that it is not expressed at all, and less-dense saturation allows the gene to be expressed at different levels.


The result can be obvious, for instance, in a calico cat and its multicolored coat, said Diane Genereux, a visiting UW biology graduate student and lead author of a paper describing the new measuring technique in the April 19 edition of the Proceedings of the National Academy of Sciences.

"In a calico cat, different genes that express coat color are on and off in different parts of the cat’s coat, so you get patches of different-colored fur," Genereux said.

Methylation typically passes from genes in a DNA strand to the same genes in a daughter strand created during DNA replication. The new technique allows researchers to examine how faithfully this "maintenance" methylation is carried out across generations and how consistently it occurs on the same gene sequence, said Brooks Miner, a UW research scientist in biology and a co-author of the paper.

But DNA molecules also can undergo what is called "de novo," or new, methylation in which a methyl group shows up on a DNA strand at a place where it did not appear before. That could change how that particular gene sequence is expressed.

Understanding methylation rates is important because the rate of genetic mutation is very low, a tiny fraction of 1 percent, while the rate of methylation changes that alter or suppress gene expression is substantially higher.

In the past, researchers could look at only one strand of DNA at a time and so could not conduct a side-by-side comparison of where methylation was occurring. An earlier paper from the same research group, led by Charles Laird, a UW biology professor, introduced a molecular method to look at both DNA strands together and observe methylation differences between them.

"When we look at both DNA strands, we know one strand has to be the parent and one has to be the daughter, but we don’t know which is which," Miner said. "The new mathematical model allows us to infer the rates of both maintenance and de novo methylation without directly identifying parent and daughter DNA strands."

Ultimately, such knowledge could lead to better understanding of, perhaps even treatment for, some cancers or genetic conditions such as one called fragile X syndrome, the most common cause of genetic mental impairments, from slight learning disabilities to severe cognitive disorders. Fragile X is caused by abnormal methylation of a gene called FMR1, Miner said, and other conditions have similar causes.

"Methylation is a normal biological process that, in the case of fragile X, is happening at the wrong place at the wrong time," he said. "It’s a basic process, but it’s not fully understood."

The new method lets the researchers see how consistently methylation occurs in different places on a DNA strand. Applying mathematical models to a DNA sequence allows them to measure methylation rates for different areas of the genome, Genereux said.

"As with any inference, we know we’re not going to get the precise rates," she said. "To get an exact answer, we’d have to look at all the cells in an individual. Our method provides a way to get useful approximations from a small DNA sample."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>