Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists infuse rat spinal cords with brain-derived human stem cells

20.04.2005


Unveiling a delivery method that may one day help surgeons treat the deadly neurodegenerative disease amyotrophic lateral sclerosis (ALS), researchers at the University of Wisconsin-Madison have inserted engineered human stem cells into the spinal cords of ALS-afflicted rats.



Reporting their work today (April 19) in the journal Human Gene Therapy, the scientists directed certain types of neural stem cells to secrete a neuron-protecting protein before injecting them into the rat spinal cord where motor neurons reside. Motor neurons dictate muscle movement by relaying messages from the spinal cord and brain to the rest of the body. ALS causes the neurons to progressively decay and die.

Notably, the UW-Madison stem cell researchers did not work with human embryonic stem cells, blank-slate cells that arise during the earliest stages of development and can develop into any of the 220 tissue and cell types in humans. Scientists have long regarded these cells as a crucial ingredient in the quest to cure spinal injuries and neurodegenerative disease.


Rather, the scientists worked with more specialized neural stem cells -- known as neural progenitor cells -- that arise from primitive stem cells during the first few weeks of human brain development. Unlike embryonic stem cells, they can only develop into neural tissue and they are incapable of living forever, as embryonic stem cells can. But the neural progenitor cells are much more appropriate for clinical use because, unlike embryonic stem cells, they can grow in the absence of animal derivatives that are considered a potential source of contamination, says co-author Clive Svendsen, a professor of anatomy based at the university’s Waisman Center, and a leading authority on neural progenitor cells.

"This is the first study that shows that certain types of stem cells can survive and release powerful protective proteins in the spinal cord of rats with a genetic form of ALS," says Svendsen.

Once inside the brain or spinal cord, neural progenitor cells grow into neuron-supporting stem cells called astrocytes. Some researchers believe that ALS causes astrocyte malfunction, which in turn causes motor neurons to degenerate and eventually die.

Several research groups around the world are trying to unleash the therapeutic potential of neural progenitor cells. But the UW-Madison work is the first "double whammy," says Svendsen, because the injected neural progenitor cells develop into astrocyte-like cells and simultaneously secrete glial cell-line derived neurotrophic factor (GDNF), a naturally occurring protein that preserves motor neurons during development. The twofold approach has a better chance of protecting healthy neurons that haven’t already succumbed to ALS, he says.

Approximately 5,600 people in the United States are annually diagnosed with ALS. Also known as Lou Gehrig’s disease, ALS is not well understood, though mutations in the SOD-1 gene -- or superoxide dismutase-1 -- are known to play a role. ALS attacks nerve cells in the brain and spinal cord, and as motor neurons progressively die, the brain can no longer initiate and control muscle movement.

The UW-Madison researchers tackled several technical barriers trying to ensure that the progenitor cells correctly gather near the motor neurons in the spinal cord, while continuing to pump GDNF once there, says Sandra Klein, lead author of the study and a UW-Madison doctoral researcher.

But making GDNF-emitting stem cells was the first puzzle to grapple with. Svendsen and his team approached the problem using a genetically engineered viral structure known as a lentivirus. Collaborating with Patrick Aebischer, a researcher in Switzerland, the scientists manipulated the lentivirus’ genetic machinery, directing it to secrete GDNF. The team then infected neural progenitor cells with the GDNF-pumping lentivirus. Once the cells were infected, the scientists washed the virus away, leaving self-sustaining colonies of GDNF-producing progenitor cells.

The next problem was actually getting the cells into the right location of the ALS rat spinal cord.

"Nobody had shown that human progenitors could be delivered right into the region of the dying motor neurons," says Klein, who chose to work with rats because they have a larger spinal cord.

Klein bore into the base of the rat spine, using a micro-pipette, or tiny dropping device, to deliver the progenitor cells into the bottom region of the spinal cord where motor neurons are located. After months of trial and error, Klein finally ascertained through staining tests that the progenitor cells were indeed gathering near the neurons and releasing GDNF in the area.

Svendsen says the approach could be regarded as a novel form of gene therapy where progenitor cells are used as "mini pumps" to deliver protein.

It is crucial now to see whether greater numbers of GDNF-bearing progenitor cells can actually prolong the life of an ALS-ridden rat, says Svendsen. If so, he aims to plan a human safety trial with a small group of patients. Ordinarily, the researchers would first test the work in primates, but good ALS primate models do not exist due to the ravaging nature of the disease, he says.

Compared to small rats, humans will most likely require more extensive spinal cord transplants, the researchers predict. If successful, a similar progenitor cell protein delivery method could radically help to combat several other ailments, including Huntington’s disease, Parkinson’s disease and stroke.

Clive Svendsen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>