Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use transcription factors to increase insulin production in diabetic mice

14.04.2005


A group of Japanese scientists has used gene therapy to deliver three insulin transcription factors, MafA, PDX-1, and NeuroD, to the livers of diabetic mice. As a result, the mice experienced an increase in insulin gene expression and insulin production, raising the possibility that this could eventually be used to treat diabetes. The research appears as the "Paper of the Week" in the April 15 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Diabetes, which is marked by high blood-sugar levels, results when the body is unable to produce a sufficient amount of insulin or when it is unable to use insulin properly. There are several ways to restore normal blood sugar levels, including administration of insulin or pancreas and islet transplantation. However, the former involves daily injections and the latter requires life-long immunosuppressive therapy and is limited by tissue supply.

An alternative way to increase the amount of insulin circulating in the body is to enhance insulin gene transcription which in turn results in an increase in the production of insulin. One possible way to do this is by increasing the body’s production of transcription factors, the molecules that are in charge of turning gene transcription on and off.



Dr. Hideaki Kaneto, of the Osaka University Graduate School of Medicine, and his colleagues did just that and over-expressed the insulin transcription factors MafA, PDX-1, and NeuroD in the liver of mice. The researchers did this by inserting the transcription factors into adenovirus and then injecting the adenovirus into the cervical vein of the mice. Each transcription factor was detected only in the liver and not in other tissues after infection with the adenovirus. The result was that the mice had a marked increase in insulin gene expression and therefore insulin production.

The researchers also discovered that overexpression of these three transcription factors in the livers of diabetic mice dramatically ameliorated glucose tolerance in these animals. "Glucose tolerance is a capacity to maintain normal glucose levels in our body," explains Dr. Kaneto. "Under normal conditions, insulin is released from pancreatic beta-cells after glucose load. The released insulin facilitates glucose uptake into peripheral tissues such as muscle and fat and suppresses glucose production in the liver in order to maintain glucose tolerance. In contrast, under diabetic conditions, beta-cell dysfunction and insulin resistance are often observed, which disturbs glucose tolerance."

PDX-1 and NeuroD are transcription factors that are found in the pancreas. They play a crucial role in pancreas development and beta-cell differentiation and also maintain normal beta-cell function by regulating several beta-cell-related genes including insulin. While these two transcription factors contributed to the increase in insulin gene expression, MafA was the most important molecule in this study. The researchers discovered that a combination of only PDX-1 and NeuroD was much less effective at increasing insulin production than all three transcription factors together.

"MafA, a recently isolated transcription factor, is expressed only in pancreatic beta-cells and is very important for insulin gene expression," notes Dr. Kaneto. "In this study, we show that MafA overexpression, together with some other pancreatic factors, markedly increases insulin gene expression in the liver, and dramatically decreases blood glucose levels in diabetic mice. These results suggest a crucial role of MafA as a novel therapeutic target for diabetes."

Although this technique is successful in mice, adenovirus cannot be used to deliver genes into humans. Thus, it will be necessary to modify the vector or to develop some other technique to deliver the transcription factor genes into humans.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>