Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene regions beyond protein instructions important in disease

14.04.2005


Gene hunters at Johns Hopkins have discovered a common genetic mutation that increases the risk of inheriting a particular birth defect not by the usual route of disrupting the gene’s protein-making instructions, but by altering a regulatory region of the gene. Although the condition, called Hirschsprung disease, is rare, its complex genetics mimics that of more common diseases, such as diabetes and heart disease.



"It’s a funny mutation in a funny place," says study leader Aravinda Chakravarti, Ph.D., director of the McKusick-Nathans Institute of Genetic Medicine. "But I think the majority of mutations found in major diseases are going to be funny mutations in funny places."

Far from being a problem, the finding is good news, he suggests. "Mutations in the protein-coding sequence can’t really be fixed, but those outside the protein-coding regions -- perhaps we can fiddle with them, perhaps they are ’tunable.’ The protein should be fine if we can just get the cells to make the right amount," he says.


"Our finding really underscores the fact that health and disease can be affected by all regions of a gene," he continues. "For diseases like diabetes and heart disease, just as for Hirschsprung disease, multiple inherited factors contribute to the disease, and these factors are not just going to be in protein-coding regions."

The researchers’ discovery, described in the April 14 issue of Nature, adds to growing evidence that problems with the amount of protein made from a gene’s instructions are likely to be just as important as - and perhaps more important than -- changes in the proteins themselves, they say.

"But finding important mutations outside of protein-coding sequences is a challenge because of the amount of genetic material to sort through," notes postdoctoral fellow Eileen Emison, Ph.D., the study’s first author. "Only 1.5 percent of the roughly 3 billion building blocks in our genetic material carry instructions for proteins."

Fortunately, about twice that much has stood the tests of time and evolution and remains the same, or very similar, among various species, indicating the regions’ biologic importance. By comparing the genetic sequences of humans and other species to find these regions, and then combining those results with traditional genetic studies of disease in families, the hunt for disease-related mutations in so-called non-coding sequences can be successful, the researchers show.

In fact, the researchers used this combined approach to discover the risk-increasing mutation in the RET gene in individuals with Hirschsprung disease. In this birth defect, the effects of multiple genetic mutations -- many still unknown -- combine to prevent proper development of the nerves that control intestinal function. Only 30 percent of Hirschsprung cases have been tied to a specific protein-changing mutation, even though protein-encoding regions of eight genes already are known to be involved in the disease.

The new risk-confirming mutation confirms Chakravarti’s long-held suspicion that some of Hirschsprung’s unknowns might be due to mutations in non-coding regions, which usually are not included in the hunt for disease-related mutations. A gene’s non-coding regions -- which don’t have to be adjacent to or even near a gene’s protein-coding sequences -- contain the gene’s on-switch (the promoter), areas that tweak whether, when and how the gene is used to make proteins (enhancers or suppressors) and other expanses that still just seem to be filler. The new mutation is in a gene called RET, whose protein-coding sequence had already been tied to the disease.

To hunt for Hirschsprung-related mutations in the largely uncharted non-coding regions, Chakravarti and his team first determined the identities of 28 specific genetic building blocks, or markers, in a large region surrounding the RET gene in samples from 126 people with Hirschsprung disease and their parents. (Earlier work had tied the disease in these families to a large region that includes RET, but no protein-changing mutations had been found in affected individuals.)

The genetic markers’ identities act as a sort of signature the researchers can track. Computer analysis identified three large regions of DNA, one including the RET gene, that were passed from parents to affected children (but not unaffected children) more often than one would expect by chance alone. One particular eight-marker signature around RET was most tightly associated with the disease, the researchers found.

Rather than sequencing the entire region in all the families, the researchers turned to comparative genomics to focus the search. Colleague Eric Green, Ph.D., and others at the National Institutes of Health determined the genetic sequences of a large region surrounding the equivalent of RET in 12 nonhuman vertebrates, including the chimpanzee, cow, mouse, dog, chicken and blowfish, for comparison to the human sequence (determined by the Human Genome Project).

"We found 84 areas within the region that were highly conserved, almost half of which were protein-coding areas of the RET gene and two other genes," says Emison. "That left us with 47 areas that didn’t carry instructions for proteins, but that were likely to be both biologically important and involved in the disease."

By overlapping the disease-linked regions and the smaller, highly conserved genetic snippets, the researchers uncovered five short areas within the overall RET gene on which to focus. Sequencing these five areas in patients revealed the culprit -- a genetic sequence that was identical in all mammals studied and in all unaffected individuals. In those with Hirschsprung, however, the sequence contained a single change.

In laboratory studies, Andrew McCallion, Ph.D., an assistant professor in Hopkins’ Institute of Genetic Medicine, and graduate student Elizabeth Grice determined that this region of RET normally enhances the gene’s activity. The mutation diminished that effect.

"Not everyone who has the mutation has the disease, but our analysis shows that the mutation clearly contributes to the risk of disease," says Emison. "Interestingly, the frequency of the mutation in different world populations mirrors that of the disease."

The frequency of the mutation, ranging from almost absent in Africa to 50 percent in Asia, is much higher than the incidence of the disease, which affects roughly 1 in 5,000 births, on average. The mutation is almost twice as common in Asians as in Europeans, and a study in the 1980s showed that Asian Americans in California were twice as likely to have a child with Hirschsprung disease than mothers of European descent. The mutation’s distribution also mirrors the greater incidence of the disease in boys, the researchers report.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>