Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical library aids in developing drug system for nerve damage

13.04.2005


A researcher studying drug design for nerve damage therapies has gotten her answer to questions by following some old advice: she used the library.

It’s not the kind of library her mother or teacher suggested, but a combinatorial chemistry library of many different protein sequences that some day might help her and her colleagues develop a successful timed drug delivery system.

Shelly Sakiyama-Elbert, Ph.D., assistant professor of biomedical engineering at Washington University in St. Louis, has screened a large number of molecules to find which ones have varying affinity, or attraction, to a sugar that binds nerve repair drugs called heparin, as well as a nerve repair protein called nerve growth factor.



Sakiyama-Elbert ran a library of viruses called bacteriophage that contained small random portions, or sequences of their surface proteins — which could be used to attract or bind other proteins — through a column with the drug bound to it. She then made the playing field more difficult for the bacteriophage to bind so that eventually she could find bacteriophage peptides that bound to heparin or nerve growth factor. By repeating this process numerous times, she identified peptide sequences that have low, medium or high affinity for the heparin drug.

Looking for good protein sequences

Sakiyama-Elbert and her colleagues are looking for protein sequences that bind to drugs to help a drug delivery vehicle provide timed release of a drug. Such drug delivery systems are called affinity-based, and it is hoped that eventually they will provide the signals necessary to stimulate tissue regeneration for conditions such as nerve damage on an appropriate time scale.

In conjunction with the sequence technique, Sakiyama-Elbert and her group developed a mathematical model that identifies the kind of drug release desired as a basis to narrow down the range of affinities they want to identify from the library. Between the modeling and future experimental studies, they hope to refine their drug delivery design to get the optimal rate of drug release.

"We started with a model I’d previously developed, then added in some features that allow us to model degradation of the delivery system by enzymes," Sakiyama-Elbert said. "Specifically, we added a component where we can model what would happen if there is a cell in part of the delivery system and how that would affect release throughout the delivery system.

"Before you only could address what would happen in a culture dish with no cells around it. We’re really interested in what will happen in cell culture or an animal model where there will be active cell-mediated degradation. We are trying to get closer to the real situation." The results were published in the January 2005 issue of Acta Biomateriali. The work was supported by a grant from the Whitaker Foundation.

Sakiyama-Elbert said lots of researchers are adopting the concept of affinity-based drug delivery systems, and the Washington University library screening technique and mathematical model together provide a good tool to expand the usefulness of these approaches.

"One interesting thing we’ve found in this work is that it appears the activities of the drugs that we’re delivering vary with the affinity of the binding site," she said. "We’re not sure if that’s a function of the affinity controlling the rate of release or if there is actually some separate biological modulator that’s being affected.

"The good thing, though, is that we’ve identified several different affinities of binding sites so we can now test whether it’s the affinity or the rate of release and determine what’s really going on."

This ability is important for researchers to get insight into the biological activity of different drugs and how they might be modulated for drug release.

"We have low, medium and high affinity binding proteins," Sakiyama-Elbert. "We can look at fast and slow release rate for all three of them, so we can control affinity and concentration to our advantage."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>