Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-regulating protein maintains fat-storage, fat-burning balance

13.04.2005


A protein that regulates cholesterol levels in the body also is responsible for maintaining a healthy balance between fat storage and fat burning, according to a UT Southwestern Medical Center study that may lead to new drug targets in the fight against obesity.



In animals and humans, a protein called the liver X receptor, or LXR, senses cholesterol levels. When these receptors detect rising amounts of cholesterol, they activate genes and a series of biochemical reactions that remove diet-derived cholesterol from the body.

The cholesterol-regulating role of LXRs is well understood, but until now, their role in regulating fat levels was unclear.


In their recent study, UT Southwestern researchers found that "knockout" mice genetically engineered to lack the gene for LXR could not store fat and did not become obese when they were fed a Western-style diet high in both fat and cholesterol. However, knockout mice fed only fat were able to store fat.

High-fat diets typically contain both fat and cholesterol, but this study shows that it is the cholesterol component of a high-fat diet that actually triggers the normal fat-storage process in the body, said Dr. David Mangelsdorf, professor of pharmacology and biochemistry at UT Southwestern and senior author of the study.

"Our studies suggest a dual role for LXRs," said Dr. Mangelsdorf, an investigator in the Howard Hughes Medical Institute at UT Southwestern. "Not only do these receptors sense and limit the accumulation of dietary cholesterol, but their activation by cholesterol is required to initiate a major fat-storing process."

The research appears in the April issue of the journal Cell Metabolism.

Because the knockout mice cannot remove excess dietary cholesterol, the animals develop extremely high cholesterol levels.

Surprisingly, the researchers found that the buildup of cholesterol in the knockout mice actually activates a fat-burning process, a finding that provided more evidence of the role LXR plays in regulating the balance between fat burning and fat storage.

"In the animals lacking LXR, not only can they not store fat, but their cholesterol concentrations build to excessive levels, which somehow drives the animals to burn fat," said Dr. Mangelsdorf, who holds the Doris and Bryan Wildenthal Distinguished Chair in Medical Science. "There is some cholesterol-related signal that the liver sends out that permits fat-burning to happen, and uncovering that signal is the big mystery we’re trying to solve next, which may have therapeutic applications."

A better understanding of the cholesterol-driven, fat-burning signal may lead to drugs that control the signal and boost the body’s ability to burn unwanted fat instead of storing it, Dr. Mangelsdorf said. The research also may aid in the development of cholesterol-related drugs. High levels of low-density lipoproteins, or "bad" cholesterol, in humans is a major risk factor for heart disease, heart attack and stroke because it contributes to the buildup of plaque that clogs the walls of arteries.

Previous studies have pointed to a protein called SREBP-1c as the primary component in the biochemical pathway that regulates fat metabolism. When an animal eats a meal rich in nutrients, insulin levels in its body go up. Insulin signals to the SREBP-1c protein to activate subsequent components of the pathway, allowing the body to store incoming nutrients as fat.

But Dr. Mangelsdorf’s research group has shown that LXRs actually regulate SREBP-1c, activating the gene responsible for making the SREBP-1c protein in the first place.

"LXR, this cholesterol sensor, is required for SREBP-1c to be expressed, to get SREBP-1c to initiate its role in regulating fat storage," said Dr. Mangelsdorf, who discovered the LXR protein and the gene responsible for making it. "SREBP-1c had been considered the master regulator of fat synthesis, but our studies have shown that LXR is the master regulator of the master regulator."

From the point of view of evolution, an animal capable of linking its ability to sense cholesterol with its ability to store fat may have had a survival advantage. An adult mammal has virtually no need for dietary cholesterol because its body can synthesize enough on its own. But LXRs give an animal the ability to sense the cholesterol component of a high-fat diet and get rid of it, while retaining the fat and storing it for times of deprivation.

"Our work suggests that fat storage is inextricably linked to the body’s ability to metabolize cholesterol and that the LXRs have evolved as the sensors that govern the unique cross talk between these two important metabolic pathways," Dr. Mangelsdorf said.

Other UT Southwestern researchers involved in the study were Dr. Nada Kalaany, postdoctoral researcher in pharmacology; Dr. Karine Gauthier former postdoctoral fellow; Dr. Pradeep Mammen, assistant professor of internal medicine; Dr. Tatsuya Kitazume, biochemistry postdoctoral researcher; Dr. Julian Peterson, professor of biochemistry; Dr. Jay Horton, associate professor of internal medicine and molecular genetics; and Dr. Daniel Garry, associate professor of internal medicine and molecular biology. Researchers at Harvard Medical School also participated.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>