Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing vaccines by computer

13.04.2005


Having vaccines developed by computer may sound unnerving but the increasing role of computer modelling in the development of new vaccines could bring new products onto the market quicker, benefiting patients and saving pharmaceutical companies millions of pounds.



Researchers using informatics and computer modelling can help scientists to uncover and harness the hidden patterns in the wealth of DNA and protein sequences that modern bioscience generates and cut the number of compounds drug companies need to test when searching for new vaccines.

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at the Edward Jenner Institute for Vaccine Research are using a very simple concept to help speed up the development of vaccines. They are studying fragments of ’foreign’ proteins that have been shown by experiments to effectively trigger a response by the immune system. They look for common patterns in their sequences or structures and use the information to create a theoretical model of what is needed for one of these fragments to trigger an immune response. They can then employ computers to search for similar sequences in the thousands of sequences now available. When the search finds something promising it can be experimentally tested to see if it will trigger a response.


Dr Darren Flower, an international leader in this work, said, "A crucial feature of this search strategy is that we don’t have to know what a foreign protein actually does in order to identify it as having fragments that that could make good vaccines. This approach has the potential to significantly reduce the number of proteins that we need to experimentally test to develop new vaccines to protect both humans and economically important livestock."

Professor Nigel Brown, BBSRC Director of Science and Technology, said, "Predictive biology, such as this work, has the potential to bring vaccines and medicines to patients faster, and may also offer the potential to re-model existing vaccines to see whether they can regain their effectiveness against viruses and bacteria that have evolved resistance."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>