Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve design of genetic on-off switches

08.04.2005


Researchers at the University of Illinois at Urbana-Champaign have set a new standard in the design and engineering of nuclear hormone receptor-based genetic on-off switches, without causing new problems or aggravating existing ones.



The new technique, published online ahead of regular publication by the Proceedings of the National Academy of Sciences, combines the advantages of directed evolution and computationally driven rational design, said Huimin Zhao, a professor in the department of chemical and biomolecular engineering and member of the Institute for Genomic Biology at Illinois.

Zhao’s team, using yeast and mammalian cells, altered the specificity of human estrogen receptor alpha by 100 million times so it would bind preferentially to a non-toxic synthetic molecule (4,4’-dihydroxybenzil) over the natural estrogen 17-beta-estradiol.


Such selectivity moves researchers closer to designing synthetic molecules that will attach to only targeted receptors to activate or deactivate desired gene expression in living systems, which could lead to advances in such applications as gene therapy, metabolic engineering, functional genomics, enzyme engineering and animal disease model studies.

Many previous attempts, using a variety of molecular methods, have involved time-consuming approaches that have resulted in unintended activity when non-targeted receptors have responded to the new molecules.

"I’m not saying that we have solved the problem, but we have shown that our approach can be very efficient and done successfully," said Zhao, also an affiliate in the chemistry and bioengineering departments and member of the Center for Biophysics and Computational Biology. "We were able to alter the ligand (molecule) selectively by 10 to the 8th in mammalian cells. No one has had this high level of success."

The Illinois approach, Zhao said, is more general, quicker to accomplish and more accurate than a scientifically hailed combinational approach published in PNAS last October by researchers at the Georgia Institute of Technology. In their paper, the Georgia scientists used random mutagenesis and chemical complementation to develop a yeast-based system that made a retinoid X receptor, a nuclear hormone receptor, recognize and bind to a synthetic molecule.

The protein-engineering approach used by Zhao’s team used directed evolution, which mimics natural evolution in a test tube, to force rapid evolution of human estrogen receptor with new ligand specificity. This process is done mainly through stepwise, site-saturation mutagenesis and high throughput screening.

The sites of human estrogen receptor chosen for saturation mutagenesis were identified through rational design, which involves computational modeling and biochemical and genetic studies to predict the interactions between the receptor and the ligand and the myriad molecular interactions that take place to drive gene expression. The engineered genetic changes subsequently make the receptor highly sensitive to the synthetic molecule that is introduced.

"We envision that the described technology could provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity," Zhao said.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>